机器学习和数据科学:机器学习和数据挖掘:回归[线性(选择和收缩,降维,超出线性范围)和非线性回归(逻辑,K-NN,树)],交叉验证(LOOCV,K -折数,偏差与方差,分类(LDA,QDA,K-NN,物流,树,SVM),聚类(PCA,K-Means,分层)本课程将介绍数据挖掘统计学习中的主要主题,包括:统计基础,数据可视化,分类,回归,聚类。 重点将放在统计学习方法,其背后的模型,直觉和假设以及对实际问题的应用上。 您可以在stats 415项目文件夹中找到我的最终项目。 项目摘要实施整个学期学习的所有

上传者: 42166261 | 上传时间: 2021-08-30 13:48:18 | 文件大小: 18.05MB | 文件类型: ZIP
R
机器学习与数据科学 机器学习和数据挖掘:回归[线性(选择和收缩,降维,超出线性范围)和非线性回归(逻辑,K-NN,树)],交叉验证(LOOCV,K折,偏差与方差) ,分类(LDA,QDA,K-NN,物流,树,SVM),聚类(PCA,K-Means,分层)本课程将介绍数据挖掘/统计学习的主要主题,包括:统计基础,数据可视化,分类,回归,聚类。 重点将放在统计学习方法,其背后的模型,直觉和假设以及对实际问题的应用上。 您可以在stats 415项目文件夹中找到我的最终项目。 项目总结 实施整个学期学习的所有分类器,以预测通过BMI分类的美国肥胖率,其中最佳分类器为7倍KNN,预测准确性为81.54% 分析模型选择方法以提供最佳模型并找到最佳预测因子; 结论是可以根据收入,饮食习惯,运动习惯和购物习惯来非参数地预测BMI

文件下载

资源详情

[{"title":"( 33 个子文件 18.05MB ) 机器学习和数据科学:机器学习和数据挖掘:回归[线性(选择和收缩,降维,超出线性范围)和非线性回归(逻辑,K-NN,树)],交叉验证(LOOCV,K -折数,偏差与方差,分类(LDA,QDA,K-NN,物流,树,SVM),聚类(PCA,K-Means,分层)本课程将介绍数据挖掘统计学习中的主要主题,包括:统计基础,数据可视化,分类,回归,聚类。 重点将放在统计学习方法,其背后的模型,直觉和假设以及对实际问题的应用上。 您可以在stats 415项目文件夹中找到我的最终项目。 项目摘要实施整个学期学习的所有","children":[{"title":"ML-and-Data-Science-main","children":[{"title":"week2","children":[{"title":"PS_2_new, v2.pdf <span style='color:#111;'> 400.01KB </span>","children":null,"spread":false},{"title":"MLPS2.Rmd <span style='color:#111;'> 9.54KB </span>","children":null,"spread":false},{"title":"imports85_modified.csv <span style='color:#111;'> 27.21KB </span>","children":null,"spread":false},{"title":"T2 - Panel Regressions.pdf <span style='color:#111;'> 1.67MB </span>","children":null,"spread":false},{"title":"MLPS2.pdf <span style='color:#111;'> 208.69KB </span>","children":null,"spread":false}],"spread":true},{"title":"week1","children":[{"title":"Machine_Learning_PS1_files","children":[{"title":"figure-latex","children":[{"title":"unnamed-chunk-20-1.pdf <span style='color:#111;'> 13.67KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Machine_Learning_PS1_YiTao_Hu.pdf <span style='color:#111;'> 352.82KB </span>","children":null,"spread":false},{"title":"T1 - Introductory, Visualization.pdf <span style='color:#111;'> 4.30MB </span>","children":null,"spread":false},{"title":"Machine_Learning_PS1_YiTao_Hu.Rmd <span style='color:#111;'> 8.49KB </span>","children":null,"spread":false},{"title":"imports-85.csv <span style='color:#111;'> 27.58KB </span>","children":null,"spread":false},{"title":"PS_1_new.pdf <span style='color:#111;'> 88.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"week4","children":[{"title":"Untitled.Rmd <span style='color:#111;'> 5.78KB </span>","children":null,"spread":false},{"title":"Untitled.pdf <span style='color:#111;'> 183.02KB </span>","children":null,"spread":false},{"title":"MLPS4.pdf <span style='color:#111;'> 219.02KB </span>","children":null,"spread":false},{"title":"PS_4_v2.pdf <span style='color:#111;'> 496.41KB </span>","children":null,"spread":false},{"title":"MLPS4.Rmd <span style='color:#111;'> 5.82KB </span>","children":null,"spread":false}],"spread":true},{"title":"week3","children":[{"title":"MLPS3.Rmd <span style='color:#111;'> 10.06KB </span>","children":null,"spread":false},{"title":"PS_3_new.pdf <span style='color:#111;'> 391.91KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"week6","children":[{"title":"PS6_data_cleaning.R <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"business_insider_text_data2.csv <span style='color:#111;'> 668.53KB </span>","children":null,"spread":false},{"title":"MLPS6.pdf <span style='color:#111;'> 225.99KB </span>","children":null,"spread":false},{"title":"T6 - Textual Analysis, Sentiment, and Trading Strategies.pdf <span style='color:#111;'> 4.83MB </span>","children":null,"spread":false},{"title":"lecture4_measuringvar_model.pdf <span style='color:#111;'> 2.69MB </span>","children":null,"spread":false},{"title":"vix_data.csv <span style='color:#111;'> 5.06KB </span>","children":null,"spread":false},{"title":"PS 6 new.pdf <span style='color:#111;'> 692.79KB </span>","children":null,"spread":false},{"title":"MLPS6.Rmd <span style='color:#111;'> 8.79KB </span>","children":null,"spread":false}],"spread":true},{"title":"week7","children":[{"title":"T6b - Textual Analysis, predicting mergers.pdf <span style='color:#111;'> 1.89MB </span>","children":null,"spread":false}],"spread":true},{"title":"week5","children":[{"title":"housing.csv <span style='color:#111;'> 31.12KB </span>","children":null,"spread":false},{"title":"PS5_New.pdf <span style='color:#111;'> 617.12KB </span>","children":null,"spread":false},{"title":"MLPS5.Rmd <span style='color:#111;'> 8.88KB </span>","children":null,"spread":false},{"title":"housing.txt <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"MLPS5.pdf <span style='color:#111;'> 216.48KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明