unet:U-Net生物医学图像分割-源码

上传者: 42166105 | 上传时间: 2021-09-22 23:11:04 | 文件大小: 67.97MB | 文件类型: ZIP
适用于Python的深度学习医学十项全能演示* 具有医学十项全能数据集的U-Net生物医学图像分割。 该存储库包含用于使用数据集( )训练模型的和 U-Net TensorFlow脚本。 。 引文 David Ojika,Bhavesh Patel,G。Athony Reina,Trent Boyer,Chad Martin和Prashant Shah。 与第三次机器学习和系统会议(MLSys)共同举办的“解决AI模型培训中的内存瓶颈”,德克萨斯州奥斯汀市,MLOps系统研讨会(2020)。

文件下载

资源详情

[{"title":"( 73 个子文件 67.97MB ) unet:U-Net生物医学图像分割-源码","children":[{"title":"unet-master","children":[{"title":"3D","children":[{"title":"settings.py <span style='color:#111;'> 970B </span>","children":null,"spread":false},{"title":"script_slurm <span style='color:#111;'> 518B </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 4.94KB </span>","children":null,"spread":false},{"title":"dataloader.py <span style='color:#111;'> 12.09KB </span>","children":null,"spread":false},{"title":"3d_unet.ipynb <span style='color:#111;'> 26.97KB </span>","children":null,"spread":false},{"title":"images","children":[{"title":"BRATS_195.png <span style='color:#111;'> 158.13KB </span>","children":null,"spread":false},{"title":"BRATS_152_img3D.avi <span style='color:#111;'> 29.90MB </span>","children":null,"spread":false},{"title":"BRATS_152_img.avi <span style='color:#111;'> 5.16MB </span>","children":null,"spread":false},{"title":"3d_commandline.png <span style='color:#111;'> 277.99KB </span>","children":null,"spread":false},{"title":"3d_unet_plot_predictions.png <span style='color:#111;'> 114.58KB </span>","children":null,"spread":false},{"title":"BRATS_426.png <span style='color:#111;'> 147.59KB </span>","children":null,"spread":false},{"title":"tensorboard.png <span style='color:#111;'> 54.29KB </span>","children":null,"spread":false},{"title":"BRATS_195_img.avi <span style='color:#111;'> 4.76MB </span>","children":null,"spread":false},{"title":"BRATS_195_img.gif <span style='color:#111;'> 3.99MB </span>","children":null,"spread":false},{"title":"BRATS_152_img3D.gif <span style='color:#111;'> 21.87MB </span>","children":null,"spread":false},{"title":"training_memory_3d_unet.png <span style='color:#111;'> 54.64KB </span>","children":null,"spread":false},{"title":"BRATS_105.png <span style='color:#111;'> 139.10KB </span>","children":null,"spread":false},{"title":"BRATS_152.png <span style='color:#111;'> 159.52KB </span>","children":null,"spread":false}],"spread":false},{"title":"run_unet_horovod.sh <span style='color:#111;'> 849B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 6.71KB </span>","children":null,"spread":false},{"title":"horovod_command.sh <span style='color:#111;'> 757B </span>","children":null,"spread":false},{"title":"quantize_model.ipynb <span style='color:#111;'> 28.66KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.68KB </span>","children":null,"spread":false},{"title":"argparser.py <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false},{"title":"train_horovod.py <span style='color:#111;'> 4.87KB </span>","children":null,"spread":false},{"title":"plot_predictions.ipynb <span style='color:#111;'> 10.94KB </span>","children":null,"spread":false}],"spread":false},{"title":"single-node","children":[{"title":"histology.ipynb <span style='color:#111;'> 21.88KB </span>","children":null,"spread":false},{"title":"mpi-tester-qsub.ipynb <span style='color:#111;'> 13.55KB </span>","children":null,"spread":false},{"title":"histology.py <span style='color:#111;'> 7.93KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"kmeans-daal4py-distributed.py <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 11.11KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"testing","children":[{"title":"testing.py <span style='color:#111;'> 24.46KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"2D","children":[{"title":"settings.py <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":"03_Inference-OpenVINO.ipynb <span style='color:#111;'> 11.19KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 5.14KB </span>","children":null,"spread":false},{"title":"dataloader.py <span style='color:#111;'> 11.25KB </span>","children":null,"spread":false},{"title":"images","children":[{"title":"run_brats_usage.png <span style='color:#111;'> 7.56KB </span>","children":null,"spread":false},{"title":"pred1100.png <span style='color:#111;'> 66.95KB </span>","children":null,"spread":false},{"title":"pred4560.png <span style='color:#111;'> 53.41KB </span>","children":null,"spread":false},{"title":"train_usage.png <span style='color:#111;'> 293.07KB </span>","children":null,"spread":false},{"title":"pred5566.png <span style='color:#111;'> 56.88KB </span>","children":null,"spread":false},{"title":"pred8722.png <span style='color:#111;'> 73.89KB </span>","children":null,"spread":false},{"title":"pred400.png <span style='color:#111;'> 44.71KB </span>","children":null,"spread":false},{"title":"pred61.png <span style='color:#111;'> 69.95KB </span>","children":null,"spread":false},{"title":"pred7864.png <span style='color:#111;'> 63.82KB </span>","children":null,"spread":false},{"title":"unet.png <span style='color:#111;'> 91.18KB </span>","children":null,"spread":false},{"title":"model.png <span style='color:#111;'> 318.02KB </span>","children":null,"spread":false},{"title":"pred40.png <span style='color:#111;'> 51.04KB </span>","children":null,"spread":false},{"title":"pred10591.png <span style='color:#111;'> 55.48KB </span>","children":null,"spread":false},{"title":"docker_run.png <span style='color:#111;'> 80.33KB </span>","children":null,"spread":false},{"title":"pred5673.png <span style='color:#111;'> 62.38KB </span>","children":null,"spread":false},{"title":"pred4385.png <span style='color:#111;'> 60.58KB </span>","children":null,"spread":false},{"title":"pred9003.png <span style='color:#111;'> 70.98KB </span>","children":null,"spread":false},{"title":"pred28.png <span style='color:#111;'> 36.80KB </span>","children":null,"spread":false},{"title":"pred8889.png <span style='color:#111;'> 54.65KB </span>","children":null,"spread":false},{"title":"figure1.png <span style='color:#111;'> 97.25KB </span>","children":null,"spread":false},{"title":"pred6433.png <span style='color:#111;'> 59.24KB </span>","children":null,"spread":false}],"spread":false},{"title":"model.py <span style='color:#111;'> 14.83KB </span>","children":null,"spread":false},{"title":"01_Train.ipynb <span style='color:#111;'> 10.80KB </span>","children":null,"spread":false},{"title":"model_pconv.py <span style='color:#111;'> 14.94KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 7.19KB </span>","children":null,"spread":false},{"title":"01_Train-Solution.ipynb <span style='color:#111;'> 670.57KB </span>","children":null,"spread":false},{"title":"libs","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"pconv_layer.py <span style='color:#111;'> 5.70KB </span>","children":null,"spread":false}],"spread":false},{"title":"plot_openvino_inference_examples.py <span style='color:#111;'> 5.98KB </span>","children":null,"spread":false},{"title":"02_Inference-Solution.ipynb <span style='color:#111;'> 486.45KB </span>","children":null,"spread":false},{"title":"plot_tf_inference_examples.py <span style='color:#111;'> 5.96KB </span>","children":null,"spread":false},{"title":"argparser.py <span style='color:#111;'> 4.43KB </span>","children":null,"spread":false},{"title":"02_Inference.ipynb <span style='color:#111;'> 9.24KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明