PyTorch教程:轻松快速地构建您的神经网络

上传者: 42165490 | 上传时间: 2022-10-27 14:55:38 | 文件大小: 46.01MB | 文件类型: ZIP
如果您想使用Tensorflow ,不用担心,我像PyTorch一样制作了一个新的Tensorflow教程。 这是链接: : pyTorch教程 在pyTorch的这些教程中,我们将构建我们的第一个神经网络,并尝试构建一些近年来开发的高级神经网络架构。 感谢,它对本教程。 pyTorch基本 建立您的第一个网络 先进的神经网络 / 其他(在制品) 对于说中文的人:下面提到的所有方法都有其中文视频和文字教程。 请访问 。 您也可以观看我的。 捐款 如果这样做对您有帮助,请考虑捐赠以支持我以获得更好的教程。 任何贡献都将不胜感激!

文件下载

资源详情

[{"title":"( 57 个子文件 46.01MB ) PyTorch教程:轻松快速地构建您的神经网络","children":[{"title":"PyTorch-Tutorial-master","children":[{"title":".gitignore <span style='color:#111;'> 28B </span>","children":null,"spread":false},{"title":"LICENCE <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.74KB </span>","children":null,"spread":false},{"title":"logo.png <span style='color:#111;'> 3.95KB </span>","children":null,"spread":false},{"title":"tutorial-contents","children":[{"title":"201_torch_numpy.py <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"504_batch_normalization.py <span style='color:#111;'> 6.02KB </span>","children":null,"spread":false},{"title":"404_autoencoder.py <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"502_GPU.py <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false},{"title":"402_RNN_classifier.py <span style='color:#111;'> 4.12KB </span>","children":null,"spread":false},{"title":"406_conditional_GAN.py <span style='color:#111;'> 4.79KB </span>","children":null,"spread":false},{"title":"503_dropout.py <span style='color:#111;'> 3.08KB </span>","children":null,"spread":false},{"title":"403_RNN_regressor.py <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false},{"title":"mnist","children":[{"title":"raw","children":[{"title":"train-labels-idx1-ubyte <span style='color:#111;'> 58.60KB </span>","children":null,"spread":false},{"title":"t10k-labels-idx1-ubyte <span style='color:#111;'> 9.77KB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte <span style='color:#111;'> 44.86MB </span>","children":null,"spread":false},{"title":"t10k-images-idx3-ubyte <span style='color:#111;'> 7.48MB </span>","children":null,"spread":false}],"spread":false},{"title":"processed","children":[{"title":"training.pt <span style='color:#111;'> 45.32MB </span>","children":null,"spread":false},{"title":"test.pt <span style='color:#111;'> 7.55MB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"202_variable.py <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false},{"title":"406_GAN.py <span style='color:#111;'> 3.47KB </span>","children":null,"spread":false},{"title":"305_batch_train.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"302_classification.py <span style='color:#111;'> 2.61KB </span>","children":null,"spread":false},{"title":"306_optimizer.py <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"301_regression.py <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false},{"title":"303_build_nn_quickly.py <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"203_activation.py <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"401_CNN.py <span style='color:#111;'> 5.54KB </span>","children":null,"spread":false},{"title":"304_save_reload.py <span style='color:#111;'> 2.27KB </span>","children":null,"spread":false},{"title":"501_why_torch_dynamic_graph.py <span style='color:#111;'> 3.31KB </span>","children":null,"spread":false},{"title":"405_DQN_Reinforcement_learning.py <span style='color:#111;'> 4.43KB </span>","children":null,"spread":false}],"spread":false},{"title":"tutorial-contents-notebooks","children":[{"title":"201_torch_numpy.ipynb <span style='color:#111;'> 8.55KB </span>","children":null,"spread":false},{"title":"502_GPU.ipynb <span style='color:#111;'> 30.54KB </span>","children":null,"spread":false},{"title":"405_DQN_Reinforcement_learning.ipynb <span style='color:#111;'> 13.89KB </span>","children":null,"spread":false},{"title":"503_dropout.ipynb <span style='color:#111;'> 162.99KB </span>","children":null,"spread":false},{"title":"202_variable.ipynb <span style='color:#111;'> 5.92KB </span>","children":null,"spread":false},{"title":"306_optimizer.ipynb <span style='color:#111;'> 88.98KB </span>","children":null,"spread":false},{"title":"403_RNN_regressor.ipynb <span style='color:#111;'> 90.32KB </span>","children":null,"spread":false},{"title":"302_classification.ipynb <span style='color:#111;'> 456.48KB </span>","children":null,"spread":false},{"title":"mnist","children":[{"title":"raw","children":[{"title":"train-labels-idx1-ubyte <span style='color:#111;'> 58.60KB </span>","children":null,"spread":false},{"title":"t10k-labels-idx1-ubyte <span style='color:#111;'> 9.77KB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte <span style='color:#111;'> 44.86MB </span>","children":null,"spread":false},{"title":"t10k-images-idx3-ubyte <span style='color:#111;'> 7.48MB </span>","children":null,"spread":false}],"spread":false},{"title":"processed","children":[{"title":"training.pt <span style='color:#111;'> 45.32MB </span>","children":null,"spread":false},{"title":"test.pt <span style='color:#111;'> 7.55MB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"406_GAN-checkpoint.ipynb <span style='color:#111;'> 448.12KB </span>","children":null,"spread":false},{"title":"401_CNN-checkpoint.ipynb <span style='color:#111;'> 281.87KB </span>","children":null,"spread":false}],"spread":false},{"title":"401_CNN.ipynb <span style='color:#111;'> 281.87KB </span>","children":null,"spread":false},{"title":"504_batch_normalization.ipynb <span style='color:#111;'> 87.41KB </span>","children":null,"spread":false},{"title":"404_autoencoder.ipynb <span style='color:#111;'> 132.23KB </span>","children":null,"spread":false},{"title":"303_build_nn_quickly.ipynb <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"402_RNN.ipynb <span style='color:#111;'> 14.56KB </span>","children":null,"spread":false},{"title":"406_GAN.ipynb <span style='color:#111;'> 448.12KB </span>","children":null,"spread":false},{"title":"305_batch_train.ipynb <span style='color:#111;'> 5.10KB </span>","children":null,"spread":false},{"title":"501_why_torch_dynamic_graph.ipynb <span style='color:#111;'> 139.14KB </span>","children":null,"spread":false},{"title":"304_save_reload.ipynb <span style='color:#111;'> 33.41KB </span>","children":null,"spread":false},{"title":"203_activation.ipynb <span style='color:#111;'> 28.55KB </span>","children":null,"spread":false},{"title":"301_regression.ipynb <span style='color:#111;'> 198.08KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明