LexiconNER:基于词典的命名实体识别-源码

上传者: 42160645 | 上传时间: 2021-07-03 23:22:39 | 文件大小: 5MB | 文件类型: ZIP
词库 这是在ACL 2019上发布的“”的实现。这项工作的重点是它仅使用实体词典执行NER,而没有任何标签数据。 顺便说一下,我们最近出版了另一本与中文NER相关的作品。 它旨在通过词典增强中文NER。 这项工作的重点是它具有很高的计算效率,同时与现有方法相比,具有可比性或更好的性能。 您可以在访问该作品的源代码及其相关论文的超链接。 设置并运行 下载Gloves.6B.100d.txt 环境 pytorch 1.1.0 python 3.6.4 cuda 8.0 运行代码说明 短语一 训练打印参数run python feature_pu_model.py -

文件下载

资源详情

[{"title":"( 50 个子文件 5MB ) LexiconNER:基于词典的命名实体识别-源码","children":[{"title":"LexiconNER-master","children":[{"title":".gitignore <span style='color:#111;'> 154B </span>","children":null,"spread":false},{"title":"feature_pu_model_evl.py <span style='color:#111;'> 4.10KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.53KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"plain_model_utils.py <span style='color:#111;'> 6.01KB </span>","children":null,"spread":false},{"title":".gitkeep <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"adaptive_pu_model_utils.py <span style='color:#111;'> 12.71KB </span>","children":null,"spread":false},{"title":"dict_utils.py <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"data_utils.py <span style='color:#111;'> 14.93KB </span>","children":null,"spread":false},{"title":"feature_pu_model_utils.py <span style='color:#111;'> 11.69KB </span>","children":null,"spread":false}],"spread":true},{"title":"adaptive_pu_model.py <span style='color:#111;'> 17.89KB </span>","children":null,"spread":false},{"title":"AIS_彭敏龙_Name_Entity_Recognition_using_Positive_Unlabeled_Learning.pptx <span style='color:#111;'> 704.86KB </span>","children":null,"spread":false},{"title":"ada_dict_generation.py <span style='color:#111;'> 7.81KB </span>","children":null,"spread":false},{"title":"feature_dictionary","children":[{"title":".gitkeep <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"conll2003","children":[{"title":"personBigDic.txt <span style='color:#111;'> 77.78KB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 35B </span>","children":null,"spread":false},{"title":"locationBigDic.txt <span style='color:#111;'> 20.68KB </span>","children":null,"spread":false},{"title":"organizationBigDic.txt <span style='color:#111;'> 43.26KB </span>","children":null,"spread":false},{"title":"miscBigDic.txt <span style='color:#111;'> 14.67KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"dictionary","children":[{"title":".gitkeep <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"conll2003","children":[{"title":"organization.txt <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"misc.txt <span style='color:#111;'> 311B </span>","children":null,"spread":false},{"title":"location.txt <span style='color:#111;'> 6.92KB </span>","children":null,"spread":false},{"title":"person.txt <span style='color:#111;'> 13.01KB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 26B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"feature_pu_model.py <span style='color:#111;'> 17.33KB </span>","children":null,"spread":false},{"title":"saved_model","children":[{"title":".gitkeep <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true},{"title":".idea","children":[{"title":"vcs.xml <span style='color:#111;'> 180B </span>","children":null,"spread":false}],"spread":true},{"title":"final_evl.py <span style='color:#111;'> 6.42KB </span>","children":null,"spread":false},{"title":"paper","children":[{"title":".gitkeep <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"Named_Entity_Recognition_with_Positive_Unlabeled_learning.pdf <span style='color:#111;'> 364.70KB </span>","children":null,"spread":false},{"title":"Appendix_of_Named_Entity_Recognition_with_Positive_Unlabeled_learning.pdf <span style='color:#111;'> 156.97KB </span>","children":null,"spread":false}],"spread":false},{"title":"sub_model.py <span style='color:#111;'> 15.46KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"conll2003","children":[{"title":"train.PER.txt <span style='color:#111;'> 1.97MB </span>","children":null,"spread":false},{"title":"test.MISC.txt <span style='color:#111;'> 458.11KB </span>","children":null,"spread":false},{"title":"test.txt <span style='color:#111;'> 458.11KB </span>","children":null,"spread":false},{"title":"valid.txt <span style='color:#111;'> 507.75KB </span>","children":null,"spread":false},{"title":".gitkeep <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"test.PER.txt <span style='color:#111;'> 458.11KB </span>","children":null,"spread":false},{"title":"train.ORG.txt <span style='color:#111;'> 1.97MB </span>","children":null,"spread":false},{"title":"test.LOC.txt <span style='color:#111;'> 458.11KB </span>","children":null,"spread":false},{"title":"valid.MISC.txt <span style='color:#111;'> 507.75KB </span>","children":null,"spread":false},{"title":"train.MISC.txt <span style='color:#111;'> 1.97MB </span>","children":null,"spread":false},{"title":"valid.PER.txt <span style='color:#111;'> 507.75KB </span>","children":null,"spread":false},{"title":"test.ORG.txt <span style='color:#111;'> 458.11KB </span>","children":null,"spread":false},{"title":"valid.LOC.txt <span style='color:#111;'> 507.75KB </span>","children":null,"spread":false},{"title":"valid.ORG.txt <span style='color:#111;'> 507.75KB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 1.97MB </span>","children":null,"spread":false},{"title":"train.LOC.txt <span style='color:#111;'> 1.97MB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"dict_match.py <span style='color:#111;'> 5.85KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明