LWPR:局部加权投影回归(LWPR)-开源

上传者: 42160645 | 上传时间: 2021-11-02 15:28:11 | 文件大小: 606KB | 文件类型: -
局部加权投影回归(LWPR)是一种完全增量的在线算法,用于在高维空间中进行非线性函数逼近,能够处理冗余和不相关的输入维。 它的核心是使用局部线性模型,该模型由输入空间中选定方向上的少量单变量回归所跨越。 使用偏最小二乘(PLS)的局部加权变体来进行降维。 请引用:[1] Sethu Vijayakumar,Aaron D'Souza和Stefan Schaal,《高维增量在线学习》,《神经计算》,第一卷。 17号,第12卷,第2602-2634页(2005)。 [2] Stefan Klanke,Sethu Vijayakumar和Stefan Schaal,《局部加权投影回归的图书馆》,《机器学习研究》(JMLR),第1卷。 9,623--626(2008)。 代码网站上的更多详细信息和使用指南。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明