( 15 个子文件 4.82MB ) News-Classification-by-there-Category:基于那里类别的新闻分类是一个项目,其中新闻是通过标题作为输入的类别,并且机器将预测它必须属于哪个类别。在该项目中,使用了从基本(Count,Tfi df等)不同的矢量化技术来推进(手套,word2vec等)技术。此外,它还使用了大约所有的机器学习算法和神经网络技术-源码
News-Classification-by-there-Category-main
count_vectorizer.pickle 315.46KB
NewsCategoryNLP-Tfidf.ipynb 301.24KB
News classification using glove and word2vec embedding with LSTM.ipynb 917.03KB
News Classification based on category Countvectorizer.ipynb 1.50MB
nb_classifier.pickle 1.88MB
News Classification based on category using Tfidf vectorizer.ipynb 810.74KB
News classification using glove and word2vec embedding with LSTM,CNN.ipynb 911.72KB
[{"title":"( 15 个子文件 4.82MB ) News-Classification-by-there-Category:基于那里类别的新闻分类是一个项目,其中新闻是通过标题作为输入的类别,并且机器将预测它必须属于哪个类别。在该项目中,使用了从基本(Count,Tfi df等)不同的矢量化技术来推进(手套,word2vec等)技术。此外,它还使用了大约所有的机器学习算法和神经网络技术-源码","children":[{"title":"News-Classification-by-there-Category-main","children":[{"title":"count_vectorizer.pickle <span style='color:#111;'> 315.46KB </span>","children":null,"spread":false},{"title":"app.py <span style='color:#111;'> 816B </span>","children":null,"spread":false},{"title":"NewsCategoryNLP-Tfidf.ipynb <span style='color:#111;'> 301.24KB </span>","children":null,"spread":false},{"title":"News classification using glove and word2vec embedding with LSTM.ipynb <span style='color:#111;'> 917.03KB </span>","children":null,"spread":false},{"title":"News Classification based on category Countvectorizer.ipynb <span style='color:#111;'> 1.50MB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"category_pie.png <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 390B </span>","children":null,"spread":false},{"title":"nb_classifier.pickle <span style='color:#111;'> 1.88MB </span>","children":null,"spread":false},{"title":"category_bar.png <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"news-data.csv <span style='color:#111;'> 4.82MB </span>","children":null,"spread":false},{"title":"Procfile <span style='color:#111;'> 21B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 432B </span>","children":null,"spread":false},{"title":"News Classification based on category using Tfidf vectorizer.ipynb <span style='color:#111;'> 810.74KB </span>","children":null,"spread":false},{"title":"News classification using glove and word2vec embedding with LSTM,CNN.ipynb <span style='color:#111;'> 911.72KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]