GNNs用于蛋白质-蛋白质相互作用-源码

上传者: 42159267 | 上传时间: 2021-09-27 17:24:00 | 文件大小: 8.49MB | 文件类型: ZIP
探索图注意力网络架构和图卷积架构以对蛋白质-蛋白质相互作用数据集中的节点进行分类。 在pytorch中实现。 如何运行: 安装requirements.txt中所述的requirements.txt 要运行火车脚本,请使用以下命令: python train.py --model_type=<'GAT' for Graph Attention Network, 'GCN' for Graph Convolution network architecture> --input_dir= --output_dir=<dir to save the model, e.g. 'saved_mo

文件下载

资源详情

[{"title":"( 21 个子文件 8.49MB ) GNNs用于蛋白质-蛋白质相互作用-源码","children":[{"title":"GNNs-for-protein-protein-interaction-master","children":[{"title":"core","children":[{"title":"models.py <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 132B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"dataloader.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"ppi_dataset","children":[{"title":"test_graph_id.npy <span style='color:#111;'> 43.28KB </span>","children":null,"spread":false},{"title":"train_labels.npy <span style='color:#111;'> 41.46MB </span>","children":null,"spread":false},{"title":"test_feats.npy <span style='color:#111;'> 2.11MB </span>","children":null,"spread":false},{"title":"train_feats.npy <span style='color:#111;'> 17.13MB </span>","children":null,"spread":false},{"title":"train_graph_id.npy <span style='color:#111;'> 350.95KB </span>","children":null,"spread":false},{"title":"test_labels.npy <span style='color:#111;'> 5.10MB </span>","children":null,"spread":false},{"title":"valid_labels.npy <span style='color:#111;'> 6.01MB </span>","children":null,"spread":false},{"title":"train_graph.json <span style='color:#111;'> 43.76MB </span>","children":null,"spread":false},{"title":"test_graph.json <span style='color:#111;'> 5.44MB </span>","children":null,"spread":false},{"title":"valid_graph_id.npy <span style='color:#111;'> 51.02KB </span>","children":null,"spread":false},{"title":"valid_graph.json <span style='color:#111;'> 6.68MB </span>","children":null,"spread":false},{"title":"valid_feats.npy <span style='color:#111;'> 2.49MB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"utils","children":[{"title":"preprocessing.py <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 990B </span>","children":null,"spread":false},{"title":"evaluate.py <span style='color:#111;'> 2.77KB </span>","children":null,"spread":false},{"title":"saved_models","children":[{"title":"best_model_GAT.pt <span style='color:#111;'> 527.95KB </span>","children":null,"spread":false},{"title":"best_model_GCN.pt <span style='color:#111;'> 174.62KB </span>","children":null,"spread":false}],"spread":true},{"title":"train.py <span style='color:#111;'> 6.10KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明