[{"title":"( 48 个子文件 2.58MB ) 模仿:在pythonTensorflow中实施逆向强化学习(IRL)算法。 深度MaxEnt,MaxEnt,LPIRL-源码","children":[{"title":"irl-imitation-master","children":[{"title":"mdp","children":[{"title":"gridworld.py <span style='color:#111;'> 10.55KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"gridworld1d.py <span style='color:#111;'> 5.04KB </span>","children":null,"spread":false},{"title":"test_value_iteration.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"value_iteration.py <span style='color:#111;'> 6.12KB </span>","children":null,"spread":false},{"title":"test_gridworld.py <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 104B </span>","children":null,"spread":false},{"title":"deep_maxent_irl.py <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false},{"title":"deep_maxent_irl_gridworld.py <span style='color:#111;'> 4.46KB </span>","children":null,"spread":false},{"title":"lp_irl.py <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":"demo_gridworld1d.py <span style='color:#111;'> 3.71KB </span>","children":null,"spread":false},{"title":"maxent_irl_gridworld.py <span style='color:#111;'> 5.30KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 450B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false},{"title":"maxent_irl.py <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"imgs","children":[{"title":"rmap_lirl_3d.jpg <span style='color:#111;'> 108.40KB </span>","children":null,"spread":false},{"title":"deep_maxent_10.jpg <span style='color:#111;'> 359.49KB </span>","children":null,"spread":false},{"title":"rmap_gt_maxent_10.jpg <span style='color:#111;'> 148.04KB </span>","children":null,"spread":false},{"title":"vmap_gt_maxent.jpg <span style='color:#111;'> 96.95KB </span>","children":null,"spread":false},{"title":"vmap_gt.jpg <span style='color:#111;'> 81.79KB </span>","children":null,"spread":false},{"title":"deep_maxent_5s.jpg <span style='color:#111;'> 205.75KB </span>","children":null,"spread":false},{"title":"rmap_maxent_10.jpg <span style='color:#111;'> 166.16KB </span>","children":null,"spread":false},{"title":"vmap_gt_maxent_10.jpg <span style='color:#111;'> 162.03KB </span>","children":null,"spread":false},{"title":"rmap_gt.jpg <span style='color:#111;'> 73.80KB </span>","children":null,"spread":false},{"title":"rmap_gt_maxent.jpg <span style='color:#111;'> 87.29KB </span>","children":null,"spread":false},{"title":"deep_maxent_5.jpg <span style='color:#111;'> 215.06KB </span>","children":null,"spread":false},{"title":"rmap_maxent_3d_10.jpg <span style='color:#111;'> 106.07KB </span>","children":null,"spread":false},{"title":"rmap_maxent.jpg <span style='color:#111;'> 90.02KB </span>","children":null,"spread":false},{"title":"rmap_lirl.jpg <span style='color:#111;'> 123.84KB </span>","children":null,"spread":false},{"title":"rmap_maxent_3d.jpg <span style='color:#111;'> 102.14KB </span>","children":null,"spread":false},{"title":"maxent10.jpg <span style='color:#111;'> 459.36KB </span>","children":null,"spread":false},{"title":"cmp.jpg <span style='color:#111;'> 242.11KB </span>","children":null,"spread":false},{"title":"maxent5_2r.jpg <span style='color:#111;'> 221.90KB </span>","children":null,"spread":false}],"spread":false},{"title":"tf_utils.py <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"img_utils.py <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"demo.py <span style='color:#111;'> 4.85KB </span>","children":null,"spread":false},{"title":"cartpole","children":[{"title":"dqn.py <span style='color:#111;'> 4.52KB </span>","children":null,"spread":false},{"title":"exp_replay.py <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"cartpole_dqn_history.py <span style='color:#111;'> 2.57KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 191B </span>","children":null,"spread":false},{"title":"cartpole_dqn.py <span style='color:#111;'> 4.12KB </span>","children":null,"spread":false},{"title":"tf_utils.py <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"cartpole-model","children":[{"title":"model <span style='color:#111;'> 11.02KB </span>","children":null,"spread":false},{"title":"model.data-00000-of-00001 <span style='color:#111;'> 2.14KB </span>","children":null,"spread":false},{"title":"model.index <span style='color:#111;'> 677B </span>","children":null,"spread":false},{"title":"model.meta <span style='color:#111;'> 62.71KB </span>","children":null,"spread":false},{"title":"checkpoint <span style='color:#111;'> 121B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"linear_irl_gridworld.py <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]