模仿:在pythonTensorflow中实施逆向强化学习(IRL)算法。 深度MaxEnt,MaxEnt,LPIRL-源码

上传者: 42156940 | 上传时间: 2021-03-23 15:34:16 | 文件大小: 2.58MB | 文件类型: ZIP
模仿 在python / Tensorflow中实现选定的逆向强化学习(IRL)算法。 python demo.py 实现的算法 线性逆强化学习(Ng&Russell 2000) 最大熵逆强化学习(Ziebart et al。2008) 最大熵深度逆强化学习(Wulfmeier et al。2015) 已实施MDP和求解器 网格世界2D 网格世界1D 价值迭代 依存关系 python 2.7 cvxopt Tensorflow 0.12.1 matplotlib 线性逆向强化学习 根据Ng和Russell 2000的论文:算法,算法1 $ python linear_irl_

文件下载

资源详情

[{"title":"( 48 个子文件 2.58MB ) 模仿:在pythonTensorflow中实施逆向强化学习(IRL)算法。 深度MaxEnt,MaxEnt,LPIRL-源码","children":[{"title":"irl-imitation-master","children":[{"title":"mdp","children":[{"title":"gridworld.py <span style='color:#111;'> 10.55KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"gridworld1d.py <span style='color:#111;'> 5.04KB </span>","children":null,"spread":false},{"title":"test_value_iteration.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"value_iteration.py <span style='color:#111;'> 6.12KB </span>","children":null,"spread":false},{"title":"test_gridworld.py <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 104B </span>","children":null,"spread":false},{"title":"deep_maxent_irl.py <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false},{"title":"deep_maxent_irl_gridworld.py <span style='color:#111;'> 4.46KB </span>","children":null,"spread":false},{"title":"lp_irl.py <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":"demo_gridworld1d.py <span style='color:#111;'> 3.71KB </span>","children":null,"spread":false},{"title":"maxent_irl_gridworld.py <span style='color:#111;'> 5.30KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 450B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false},{"title":"maxent_irl.py <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"imgs","children":[{"title":"rmap_lirl_3d.jpg <span style='color:#111;'> 108.40KB </span>","children":null,"spread":false},{"title":"deep_maxent_10.jpg <span style='color:#111;'> 359.49KB </span>","children":null,"spread":false},{"title":"rmap_gt_maxent_10.jpg <span style='color:#111;'> 148.04KB </span>","children":null,"spread":false},{"title":"vmap_gt_maxent.jpg <span style='color:#111;'> 96.95KB </span>","children":null,"spread":false},{"title":"vmap_gt.jpg <span style='color:#111;'> 81.79KB </span>","children":null,"spread":false},{"title":"deep_maxent_5s.jpg <span style='color:#111;'> 205.75KB </span>","children":null,"spread":false},{"title":"rmap_maxent_10.jpg <span style='color:#111;'> 166.16KB </span>","children":null,"spread":false},{"title":"vmap_gt_maxent_10.jpg <span style='color:#111;'> 162.03KB </span>","children":null,"spread":false},{"title":"rmap_gt.jpg <span style='color:#111;'> 73.80KB </span>","children":null,"spread":false},{"title":"rmap_gt_maxent.jpg <span style='color:#111;'> 87.29KB </span>","children":null,"spread":false},{"title":"deep_maxent_5.jpg <span style='color:#111;'> 215.06KB </span>","children":null,"spread":false},{"title":"rmap_maxent_3d_10.jpg <span style='color:#111;'> 106.07KB </span>","children":null,"spread":false},{"title":"rmap_maxent.jpg <span style='color:#111;'> 90.02KB </span>","children":null,"spread":false},{"title":"rmap_lirl.jpg <span style='color:#111;'> 123.84KB </span>","children":null,"spread":false},{"title":"rmap_maxent_3d.jpg <span style='color:#111;'> 102.14KB </span>","children":null,"spread":false},{"title":"maxent10.jpg <span style='color:#111;'> 459.36KB </span>","children":null,"spread":false},{"title":"cmp.jpg <span style='color:#111;'> 242.11KB </span>","children":null,"spread":false},{"title":"maxent5_2r.jpg <span style='color:#111;'> 221.90KB </span>","children":null,"spread":false}],"spread":false},{"title":"tf_utils.py <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"img_utils.py <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"demo.py <span style='color:#111;'> 4.85KB </span>","children":null,"spread":false},{"title":"cartpole","children":[{"title":"dqn.py <span style='color:#111;'> 4.52KB </span>","children":null,"spread":false},{"title":"exp_replay.py <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"cartpole_dqn_history.py <span style='color:#111;'> 2.57KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 191B </span>","children":null,"spread":false},{"title":"cartpole_dqn.py <span style='color:#111;'> 4.12KB </span>","children":null,"spread":false},{"title":"tf_utils.py <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"cartpole-model","children":[{"title":"model <span style='color:#111;'> 11.02KB </span>","children":null,"spread":false},{"title":"model.data-00000-of-00001 <span style='color:#111;'> 2.14KB </span>","children":null,"spread":false},{"title":"model.index <span style='color:#111;'> 677B </span>","children":null,"spread":false},{"title":"model.meta <span style='color:#111;'> 62.71KB </span>","children":null,"spread":false},{"title":"checkpoint <span style='color:#111;'> 121B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"linear_irl_gridworld.py <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • cmakemake :
    您好,能说一下这些代码的具体使用教程吗?初学有点不会用
    2021-05-16

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明