Recommendation-system-based-on-knowledge-graph-embedding:基于知识图嵌入的推荐系统

上传者: 42153793 | 上传时间: 2022-11-21 21:20:29 | 文件大小: 1.77MB | 文件类型: ZIP
基于知识图嵌入的推荐系统 基于知识图嵌入的推荐系统 本系统是一个基于知识图嵌入的商品推荐系统,以下是该系统的详细介绍,基本代码都是自己所写,TransE和Rescal方法实现部分是照着论文与相关代码自己进行的复现,并且相关代码中都有我写的一些注释。 1.generate_data.py是用于生成模拟数据,在进行真实使用时可以参照所生成的模拟数据的格式进行数据录入 2.data文件夹下需要有entities.txt以及relations.txt两个数据,他们分别是实体(people和items)的名称以及索引号,以及关联的名称以及索引号,关联也可以有多种,然后该文件夹下还应该有train.txt,valid.txt和test.txt,作为模型训练的依托,其中的neg.txt可要可不要,这个文件并不参与模型的训练过程 3.dataset.py文件主要是模型训练中处理数据的代码,model.p

文件下载

资源详情

[{"title":"( 27 个子文件 1.77MB ) Recommendation-system-based-on-knowledge-graph-embedding:基于知识图嵌入的推荐系统","children":[{"title":"Recommendation-system-based-on-knowledge-graph-embedding-master","children":[{"title":"README.md <span style='color:#111;'> 3.75KB </span>","children":null,"spread":false},{"title":"knowledge graph embedding的商品推荐系统","children":[{"title":"dataset.pyc <span style='color:#111;'> 4.60KB </span>","children":null,"spread":false},{"title":"run.sh <span style='color:#111;'> 248B </span>","children":null,"spread":false},{"title":"negposscore.npy <span style='color:#111;'> 336.34KB </span>","children":null,"spread":false},{"title":"TransE_relation_emb.npy <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 5.34KB </span>","children":null,"spread":false},{"title":"generate_data.py <span style='color:#111;'> 839B </span>","children":null,"spread":false},{"title":"use.py <span style='color:#111;'> 4.93KB </span>","children":null,"spread":false},{"title":"TransE_entity_emb.npy <span style='color:#111;'> 1.26MB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 29.50KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"model.cpython-35.pyc <span style='color:#111;'> 52.52KB </span>","children":null,"spread":false},{"title":"dataset.cpython-35.pyc <span style='color:#111;'> 5.04KB </span>","children":null,"spread":false},{"title":"dataset.cpython-36.pyc <span style='color:#111;'> 4.51KB </span>","children":null,"spread":false},{"title":"model.cpython-36.pyc <span style='color:#111;'> 45.52KB </span>","children":null,"spread":false}],"spread":true},{"title":"posscore.npy <span style='color:#111;'> 43.65KB </span>","children":null,"spread":false},{"title":"说明.txt <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"neg.txt <span style='color:#111;'> 1.21MB </span>","children":null,"spread":false},{"title":"test.txt <span style='color:#111;'> 40.22KB </span>","children":null,"spread":false},{"title":"relations.txt <span style='color:#111;'> 7B </span>","children":null,"spread":false},{"title":"valid.txt <span style='color:#111;'> 40.22KB </span>","children":null,"spread":false},{"title":"entites.txt <span style='color:#111;'> 7B </span>","children":null,"spread":false},{"title":"buy_data.txt <span style='color:#111;'> 236.62KB </span>","children":null,"spread":false},{"title":"entities.txt <span style='color:#111;'> 9.83KB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 160.82KB </span>","children":null,"spread":false}],"spread":false},{"title":"run.py <span style='color:#111;'> 6.74KB </span>","children":null,"spread":false},{"title":"运行结果图","children":[{"title":"运行结果图.png <span style='color:#111;'> 18.15KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明