ChangeDetection:使用PyTorch进行变更检测的框架-源码

上传者: 42150745 | 上传时间: 2021-09-23 14:21:29 | 文件大小: 464KB | 文件类型: ZIP
Change Detection 一个用 PyTorch 编写的,专门针对变化检测 (Change Detection) 任务的模型框架。 结果可视化(部分) Siamese_unet_conc + Szada TODO 参考 写在前面 为什么写这个项目? 变化检测(Change Detection,CD)任务与其他任务,如语义分割,目标检测等相比,有其特有的特性(坑),如数据集少(少到可怜那种,尤其是异源,我**),公开的模型也很少,输入常常是成对的(导致一些在 PyTorch 中常用的函数,如Random系列等需要做出一些改变),给初学者带来了很大的困扰(对,没错就是我),所以我将毕设期间写的一些代码,仿照 maskrcnn-benchmark 整理一下发布出来。 特性 边训练边测试(可选) 由于数据集数量较少,以及 CD 只是一个 “二分类” 问题,所以模型一般较为简单,因此边训练边

文件下载

资源详情

[{"title":"( 50 个子文件 464KB ) ChangeDetection:使用PyTorch进行变更检测的框架-源码","children":[{"title":"ChangeDetection-master","children":[{"title":"layers","children":[{"title":"normal.py <span style='color:#111;'> 897B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"dropout.py <span style='color:#111;'> 453B </span>","children":null,"spread":false}],"spread":true},{"title":"utils","children":[{"title":"img_op.py <span style='color:#111;'> 967B </span>","children":null,"spread":false},{"title":"metric.py <span style='color:#111;'> 1002B </span>","children":null,"spread":false},{"title":"datamaker.py <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"checkpoints.py <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"eval.py <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"states.py <span style='color:#111;'> 610B </span>","children":null,"spread":false},{"title":"logger.py <span style='color:#111;'> 780B </span>","children":null,"spread":false},{"title":"mail.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false}],"spread":true},{"title":".github","children":[{"title":"TEST.md <span style='color:#111;'> 8B </span>","children":null,"spread":false},{"title":"images","children":[{"title":"Pr_0.785_Re_0.727_F1_0.755_PCC_0.961_Kappa_0.734.png <span style='color:#111;'> 5.67KB </span>","children":null,"spread":false},{"title":"gt4_test.bmp <span style='color:#111;'> 1.00MB </span>","children":null,"spread":false},{"title":"tensorboard.png <span style='color:#111;'> 69.61KB </span>","children":null,"spread":false},{"title":"augmentation.png <span style='color:#111;'> 44.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"CONFIGS.md <span style='color:#111;'> 259B </span>","children":null,"spread":false},{"title":"TODO.md <span style='color:#111;'> 7B </span>","children":null,"spread":false},{"title":"README_EN.md <span style='color:#111;'> 591B </span>","children":null,"spread":false},{"title":"INSTALL.md <span style='color:#111;'> 82B </span>","children":null,"spread":false}],"spread":true},{"title":"configs","children":[{"title":"default.py <span style='color:#111;'> 2.46KB </span>","children":null,"spread":false},{"title":"homo","children":[{"title":"szada_siamese_unet_conc.yaml <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"szada_siamese_unet_diff.yaml <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 31B </span>","children":null,"spread":false}],"spread":true},{"title":"train_net.py <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false},{"title":"model","children":[{"title":"siamese_unet_conc.py <span style='color:#111;'> 3.67KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"siamese_unet_diff.py <span style='color:#111;'> 3.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"tools.ipynb <span style='color:#111;'> 467.17KB </span>","children":null,"spread":false},{"title":"build","children":[{"title":"dataloader.py <span style='color:#111;'> 867B </span>","children":null,"spread":false},{"title":"tensorboard.py <span style='color:#111;'> 433B </span>","children":null,"spread":false},{"title":"checkpoint.py <span style='color:#111;'> 155B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 929B </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 885B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 261B </span>","children":null,"spread":false},{"title":"optimizer.py <span style='color:#111;'> 412B </span>","children":null,"spread":false},{"title":"scheduler.py <span style='color:#111;'> 800B </span>","children":null,"spread":false}],"spread":true},{"title":"eval_net.py <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.81KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"isprs.py <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":"normal.py <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"engine","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"evaler.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"trainer.py <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"solver","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"lr_scheduler.py <span style='color:#111;'> 4.07KB </span>","children":null,"spread":false},{"title":"transforms.py <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明