ml_for_astro:天体物理学动手机器学习教程-源码

上传者: 42148053 | 上传时间: 2021-10-18 14:40:16 | 文件大小: 2.31MB | 文件类型: -
天体物理学动手机器学习教程 本教程为天体物理学家演示了一些简单的机器学习和深度学习用例。 它是在2020年11月的研讨会上首次展示的。 第1部分展示了如何使用scikit-learn在表格数据上训练浅层统计模型,例如支持向量机(SVM)和随机森林,以根据其物理属性(温度/半径/发光度)对星型进行分类。 第2部分演示了如何使用非结构化数据(例如图像)。 它通过深层卷积网络从手工制作的特征(渐变的直方图)逐渐变为学习的特征。 第3部分给出了使用诸如2D空间中的聚类,图像检索,对预训练网络进行微调等深层功能可以实现的不错的聚会技巧的示例。 如果在此代码中发现任何错误或问题,请随时打开问题或请求请求。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明