RandLA-Net-pytorch:RandLA-Net(https的Pytorch实施-源码

上传者: 42144554 | 上传时间: 2021-08-17 16:03:20 | 文件大小: 13.41MB | 文件类型: ZIP
RandLA-Net-pytorch 该存储库包含的实现。 我们现在仅支持SemanticKITTI数据集。 (欢迎大家共同发展,提高公关意识) 我们的模型几乎与原始实现一样好。 (验证集:我们的52.9%的mIoU与原始的53.1%) 我们将pretrain-model放置在目录中。 表现 验证集结果(seq 08) 与原始实施比较 模型 密欧 原始Tensorflow 0.531 我们的Pytorch实施 0.529 每课时 密欧 车 自行车 摩托车 卡车 其他车辆 人 骑自行车的人 电单车司机 路 停车处 人行道 其他地面 建造 栅栏 植被 树干 地形 极 交通标志 52.9 0.919 0.122 0.290 0.660 0.444 0.515 0.676 0.000 0.912 0.421 0.759 0.001 0.878 0.354

文件下载

资源详情

[{"title":"( 43 个子文件 13.41MB ) RandLA-Net-pytorch:RandLA-Net(https的Pytorch实施-源码","children":[{"title":"RandLA-Net-pytorch-main","children":[{"title":".gitignore <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"evaluate_SemanticKITTI.py <span style='color:#111;'> 4.98KB </span>","children":null,"spread":false},{"title":"train_SemanticKITTI.py <span style='color:#111;'> 7.39KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 189B </span>","children":null,"spread":false},{"title":"dataset","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"semkitti_testset.py <span style='color:#111;'> 5.77KB </span>","children":null,"spread":false},{"title":"semkitti_trainset.py <span style='color:#111;'> 5.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"compile_op.sh <span style='color:#111;'> 130B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"visualize_SemanticKITTI.py <span style='color:#111;'> 3.29KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"nearest_neighbors","children":[{"title":"setup.py <span style='color:#111;'> 551B </span>","children":null,"spread":false},{"title":"knn.cpp <span style='color:#111;'> 397.06KB </span>","children":null,"spread":false},{"title":"knn_.h <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"nanoflann.hpp <span style='color:#111;'> 71.45KB </span>","children":null,"spread":false},{"title":"knn_.cxx <span style='color:#111;'> 7.11KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 329B </span>","children":null,"spread":false},{"title":"KDTreeTableAdaptor.h <span style='color:#111;'> 7.86KB </span>","children":null,"spread":false},{"title":"knn.pyx <span style='color:#111;'> 4.77KB </span>","children":null,"spread":false}],"spread":true},{"title":"cpp_wrappers","children":[{"title":"cpp_subsampling","children":[{"title":"setup.py <span style='color:#111;'> 637B </span>","children":null,"spread":false},{"title":"grid_subsampling","children":[{"title":"grid_subsampling.cpp <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false},{"title":"grid_subsampling.h <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false}],"spread":false},{"title":"wrapper.cpp <span style='color:#111;'> 8.32KB </span>","children":null,"spread":false}],"spread":true},{"title":"compile_wrappers.sh <span style='color:#111;'> 102B </span>","children":null,"spread":false},{"title":"cpp_utils","children":[{"title":"nanoflann","children":[{"title":"nanoflann.hpp <span style='color:#111;'> 71.42KB </span>","children":null,"spread":false}],"spread":false},{"title":"cloud","children":[{"title":"cloud.cpp <span style='color:#111;'> 958B </span>","children":null,"spread":false},{"title":"cloud.h <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"data_process.py <span style='color:#111;'> 7.27KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 3.01KB </span>","children":null,"spread":false},{"title":"np_ioueval.py <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"semantic-kitti.yaml <span style='color:#111;'> 5.41KB </span>","children":null,"spread":false},{"title":"semkitti_vis","children":[{"title":"laserscanvis.py <span style='color:#111;'> 6.86KB </span>","children":null,"spread":false},{"title":"laserscan.py <span style='color:#111;'> 10.67KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false},{"title":"metric.py <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"network","children":[{"title":"loss_func.py <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"pytorch_utils.py <span style='color:#111;'> 6.98KB </span>","children":null,"spread":false},{"title":"RandLANet.py <span style='color:#111;'> 8.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"pretrain_model","children":[{"title":"checkpoint.tar <span style='color:#111;'> 14.35MB </span>","children":null,"spread":false}],"spread":true},{"title":"test_SemanticKITTI.py <span style='color:#111;'> 6.60KB </span>","children":null,"spread":false},{"title":"data_prepare_semantickitti.py <span style='color:#111;'> 3.80KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明