CycleGAN:Pytorch实现CycleGAN-源码

上传者: 42144554 | 上传时间: 2021-11-03 20:39:03 | 文件大小: 7.69MB | 文件类型: -
循环GAN Pytorch实现CycleGAN :star:在GitHub上为这个项目加注星标-它会有所帮助! 是将一个图像的到另一个图像的任务。它通过使用一些预训练模型的功能来实现。在这种情况下,使用在ImageNet上预训练的VGG19这样的基本模型。首先,我们从VGG19网络的某些层创建我们自己的模型。然后,通过将网络中的梯度添加到输入图像中,可以得到具有转移样式的结果图像。 表中的内容 编译模型 如上所述,首先,我们应该从预先训练的模型中编译模型。在这种特殊情况下,使用了VGG19 。我们应该定义Content loss和Style loss将在哪一层之间进行计算。由于模型的输入将是content_image的副本,因此我们不需要太多的节点来计算Content loss ,而不需要Style loss (在这种情况下, 1个节点用于Content loss , 5个节点用于Style

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明