CRNN:卷积递归神经网络用于Keras中的场景文本识别或OCR-源码

上传者: 42144201 | 上传时间: 2021-12-12 15:14:51 | 文件大小: 59KB | 文件类型: -
神经网络 卷积神经网络的Keras文本识别实现 此实现中有两种可用的模型。 一个基于原始CRNN模型,另一个则包含空间转换器网络层以纠正文本。 但是,性能差别不大,因此由您决定选择哪种型号。 训练 您可以使用Synth90k数据集训练模型,但也可以使用自己的数据。 如果使用自己的数据,则必须重写代码,以便根据数据结构来加载数据。 要下载Synth90k数据集,请转到此并下载MJSynth数据集。 可以将Synth90k数据集放在data/Synth90k或者使用--base_dir参数指定数据集的路径。 基本目录应包括许多包含Synth90k数据的子目录,用于训练,验证和测试数据的注释文件,列出数据集中所有图像的路径的文件以及词典文件。 使用--model参数指定要使用的两个可用模型中的哪个。 默认模型是带有STN层的CRNN。 有关详细信息,请参见config.py 。 运行tra

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明