tf.fashionAI:TensorFlow中天池FashionAI服装关键点检测流程的完整管道-源码

上传者: 42139357 | 上传时间: 2021-04-08 14:46:16 | 文件大小: 491KB | 文件类型: ZIP
TensorFlow中的沙漏,DHN和CPN模型用于2018年-天池服装AI关键点检测 该存储库包含TensorFlow的和用于的重新实现代码。 。 这里的CPN(层叠金字塔网络)和DHN(反卷积头网络)都有几个不同的主干:ResNet50,SE-ResNet50,SE-ResNeXt50, 或DetResNeXt50。 我还尝试了“以动态集成模型,尽管仅取得了有限的改进。 骨干网的预训练模型可以在这里找到: 介绍 这次比赛的主要目的是发现从阿里巴巴的电子商务平台收集的衣服形象的关键点。 总共有五种图像,共五个类别:上衣,外套,裤子,裙子,衣服。 每个类别的关键点定义如下。 几乎所有代

文件下载

资源详情

[{"title":"( 49 个子文件 491KB ) tf.fashionAI:TensorFlow中天池FashionAI服装关键点检测流程的完整管道-源码","children":[{"title":"tf.fashionAI-master","children":[{"title":".gitignore <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"eval_all_cpn_onepass.py <span style='color:#111;'> 28.50KB </span>","children":null,"spread":false},{"title":"train_hg_subnet.py <span style='color:#111;'> 21.23KB </span>","children":null,"spread":false},{"title":"train_senet_cpn_onebyone.py <span style='color:#111;'> 34.56KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"depth_conv2d.py <span style='color:#111;'> 6.01KB </span>","children":null,"spread":false},{"title":"utility","children":[{"title":"train_helper.py <span style='color:#111;'> 11.57KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"mertric.py <span style='color:#111;'> 4.28KB </span>","children":null,"spread":false}],"spread":true},{"title":"train_large_xt_cpn_onebyone.py <span style='color:#111;'> 32.29KB </span>","children":null,"spread":false},{"title":"run_local_mertric.py <span style='color:#111;'> 3.78KB </span>","children":null,"spread":false},{"title":"convert_tfrecords.py <span style='color:#111;'> 15.11KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 7.05KB </span>","children":null,"spread":false},{"title":"ensemble_from_csv.py <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 11.58KB </span>","children":null,"spread":false},{"title":"net","children":[{"title":"seresnet_cpn.py <span style='color:#111;'> 48.06KB </span>","children":null,"spread":false},{"title":"detnet_cpn.py <span style='color:#111;'> 17.34KB </span>","children":null,"spread":false},{"title":"hourglass.py <span style='color:#111;'> 11.58KB </span>","children":null,"spread":false},{"title":"cpn.py <span style='color:#111;'> 14.64KB </span>","children":null,"spread":false},{"title":"simple_xt.py <span style='color:#111;'> 24.12KB </span>","children":null,"spread":false},{"title":"detxt_cpn.py <span style='color:#111;'> 39.07KB </span>","children":null,"spread":false}],"spread":false},{"title":"tf_replicate_model_fn.py <span style='color:#111;'> 31.63KB </span>","children":null,"spread":false},{"title":"eval_all_cpn_simple.py <span style='color:#111;'> 21.97KB </span>","children":null,"spread":false},{"title":"swa_train_cpn.py <span style='color:#111;'> 28.38KB </span>","children":null,"spread":false},{"title":"train_detnet_cpn_onebyone.py <span style='color:#111;'> 34.52KB </span>","children":null,"spread":false},{"title":"train_hg_seqnet.py <span style='color:#111;'> 11.28KB </span>","children":null,"spread":false},{"title":"preprocessing","children":[{"title":"preprocessing.py <span style='color:#111;'> 54.82KB </span>","children":null,"spread":false},{"title":"get_dataset_mean_std.py <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 12.15KB </span>","children":null,"spread":false},{"title":"dataset_inspect.py <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"imagenet_preprocessing.py <span style='color:#111;'> 9.37KB </span>","children":null,"spread":false}],"spread":false},{"title":"swa_moving_average.py <span style='color:#111;'> 20.84KB </span>","children":null,"spread":false},{"title":"inspect_checkpoint.py <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"eval_hg_subnet.py <span style='color:#111;'> 30.65KB </span>","children":null,"spread":false},{"title":"train_detxt_cpn_onebyone.py <span style='color:#111;'> 34.35KB </span>","children":null,"spread":false},{"title":"train_hg_onebyone.py <span style='color:#111;'> 31.51KB </span>","children":null,"spread":false},{"title":"demos","children":[{"title":"outline.jpg <span style='color:#111;'> 140.67KB </span>","children":null,"spread":false},{"title":"cpn","children":[{"title":"trousers.jpg <span style='color:#111;'> 27.75KB </span>","children":null,"spread":false},{"title":"blouse.jpg <span style='color:#111;'> 15.50KB </span>","children":null,"spread":false},{"title":"outwear.jpg <span style='color:#111;'> 13.98KB </span>","children":null,"spread":false},{"title":"dress.jpg <span style='color:#111;'> 13.29KB </span>","children":null,"spread":false},{"title":"skirt.jpg <span style='color:#111;'> 13.26KB </span>","children":null,"spread":false}],"spread":false},{"title":"hg","children":[{"title":"trousers.jpg <span style='color:#111;'> 21.37KB </span>","children":null,"spread":false},{"title":"blouse.jpg <span style='color:#111;'> 14.04KB </span>","children":null,"spread":false},{"title":"outwear.jpg <span style='color:#111;'> 27.00KB </span>","children":null,"spread":false},{"title":"dress.jpg <span style='color:#111;'> 18.87KB </span>","children":null,"spread":false},{"title":"skirt.jpg <span style='color:#111;'> 22.62KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"train_simplenet_onebyone.py <span style='color:#111;'> 28.90KB </span>","children":null,"spread":false},{"title":"train_cpn_onebyone.py <span style='color:#111;'> 34.09KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • zy143 :
    用户下载后在一定时间内未进行评价,系统默认好评。
    2021-08-04

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明