GraphSleepNet:GraphSleepNet

上传者: 42139252 | 上传时间: 2022-11-08 09:27:18 | 文件大小: 1.54MB | 文件类型: ZIP
GraphSleepNet GraphSleepNet:用于睡眠阶段分类的自适应时空图卷积网络 这些是MASS SS3数据库的源代码和实验设置。 参考 GraphSleepNet:用于睡眠阶段分类的自适应时空图卷积网络。 (IJCAI 2020年) @inproceedings{ijcai2020-184, title = {GraphSleepNet: Adaptive Spatial-Temporal Graph Convolutional Networks for Sleep Stage Classification}, author = {Jia, Ziyu and Lin, Youfang and Wang, Jing and Zhou, Ronghao and Ning, Xiaojun and He, Yuanlai and Zhao, Yaosh

文件下载

资源详情

[{"title":"( 11 个子文件 1.54MB ) GraphSleepNet:GraphSleepNet","children":[{"title":"GraphSleepNet-master","children":[{"title":"fig","children":[{"title":"ver7_overall.png <span style='color:#111;'> 201.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"preprocess","children":[{"title":"process_SS3.py <span style='color:#111;'> 5.74KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 765B </span>","children":null,"spread":false},{"title":"DE_PSD.py <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"train.py <span style='color:#111;'> 7.60KB </span>","children":null,"spread":false},{"title":"model","children":[{"title":"GraphSleepNet.py <span style='color:#111;'> 18.18KB </span>","children":null,"spread":false},{"title":"Utils.py <span style='color:#111;'> 6.01KB </span>","children":null,"spread":false},{"title":"DataGenerator.py <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"GraphSleepNet.pdf <span style='color:#111;'> 1.84MB </span>","children":null,"spread":false},{"title":"config","children":[{"title":"SS3.config <span style='color:#111;'> 386B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明