PySCMs:一个实现结构因果模型(SCM)的Python包-源码

上传者: 42138788 | 上传时间: 2021-09-09 20:44:17 | 文件大小: 26KB | 文件类型: ZIP
结构因果模型 一个实现结构因果模型(SCM)的Python包。 该软件包使从结构因果模型到图形的转换成为可能。 也可以直接从系数矩阵(即图的加权邻接矩阵)生成线性结构因果模型。 “图形”对象是通过提供一个邻接矩阵(和一个名称,可选)来定义的。 它们包含并维护图形的不同表示形式,视情况而定,这些表示形式可能会很有用,并且提供了从任何一种表示形式转换为任何其他表示形式的工具。 当前实现的表示为: 通过邻接矩阵, 通过邻接表, 通过边缘(“类型化”边缘:无边缘,向前,向后或无向边缘)。

文件下载

资源详情

[{"title":"( 33 个子文件 26KB ) PySCMs:一个实现结构因果模型(SCM)的Python包-源码","children":[{"title":"PySCMs-main","children":[{"title":"setup.py <span style='color:#111;'> 907B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 25B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 835B </span>","children":null,"spread":false},{"title":"StructuralCausalModels","children":[{"title":"dag.py <span style='color:#111;'> 7.13KB </span>","children":null,"spread":false},{"title":"structural_equation.py <span style='color:#111;'> 639B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"graph_via_adjacency_lists.py <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"directed_graph.py <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"linear_structural_causal_model.py <span style='color:#111;'> 2.75KB </span>","children":null,"spread":false},{"title":"graph_via_edges.py <span style='color:#111;'> 4.78KB </span>","children":null,"spread":false},{"title":"graph.py <span style='color:#111;'> 10.87KB </span>","children":null,"spread":false},{"title":"structural_causal_model.py <span style='color:#111;'> 2.50KB </span>","children":null,"spread":false},{"title":"graph_via_adjacency_matrix.py <span style='color:#111;'> 2.61KB </span>","children":null,"spread":false},{"title":"test","children":[{"title":"test_structural_causal_model.py <span style='color:#111;'> 5.33KB </span>","children":null,"spread":false},{"title":"test_dag.py <span style='color:#111;'> 4.71KB </span>","children":null,"spread":false},{"title":"test_linear_structural_causal_model.py <span style='color:#111;'> 3.57KB </span>","children":null,"spread":false},{"title":"test_graph_via_adjacency_lists.py <span style='color:#111;'> 734B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"test_directed_graph.py <span style='color:#111;'> 807B </span>","children":null,"spread":false},{"title":"test_graph_via_edges.py <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"test_graph_via_adjacency_matrix.py <span style='color:#111;'> 626B </span>","children":null,"spread":false},{"title":"test_graph.py <span style='color:#111;'> 4.98KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":".readthedocs.yaml <span style='color:#111;'> 503B </span>","children":null,"spread":false},{"title":"docs","children":[{"title":"Makefile <span style='color:#111;'> 638B </span>","children":null,"spread":false},{"title":"make.bat <span style='color:#111;'> 799B </span>","children":null,"spread":false},{"title":"source","children":[{"title":"requirements.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"index.rst <span style='color:#111;'> 444B </span>","children":null,"spread":false},{"title":"conf.py <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"modules.rst <span style='color:#111;'> 103B </span>","children":null,"spread":false},{"title":"StructuralCausalModels.rst <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false},{"title":"StructuralCausalModels.test.rst <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明