[{"title":"( 40 个子文件 17.86MB ) NLP:NLP,韩文,Konlpy,文本分类-源码","children":[{"title":"NLP-master","children":[{"title":"Seq2Seq+Attention_mechanism_for_reciept_OCR_error_fix2.ipynb <span style='color:#111;'> 129.55KB </span>","children":null,"spread":false},{"title":"2020NLU의 근황에 대한 나의 생각.txt <span style='color:#111;'> 3.75KB </span>","children":null,"spread":false},{"title":"Soynlp_단어추출,_토큰화.ipynb <span style='color:#111;'> 36.91KB </span>","children":null,"spread":false},{"title":"Detectron2_semi_haram03_17.ipynb <span style='color:#111;'> 18.23MB </span>","children":null,"spread":false},{"title":"Keras_Word_Embedding.ipynb <span style='color:#111;'> 1.15MB </span>","children":null,"spread":false},{"title":"receipt_transformer_pytorch_kobert.ipynb <span style='color:#111;'> 32.47KB </span>","children":null,"spread":false},{"title":"Google_SentencePiece_단어_뭉치_만들기.ipynb <span style='color:#111;'> 12.11KB </span>","children":null,"spread":false},{"title":"seq2seq_만들기(Simple_seq2seq).ipynb <span style='color:#111;'> 3.70KB </span>","children":null,"spread":false},{"title":"KoBERT.ipynb <span style='color:#111;'> 4.73KB </span>","children":null,"spread":false},{"title":"seq2seq_translation_tutorial.ipynb <span style='color:#111;'> 49.75KB </span>","children":null,"spread":false},{"title":"영수증_seq2seq_attention(ver_2).ipynb <span style='color:#111;'> 337.68KB </span>","children":null,"spread":false},{"title":"HSV_색상_분리하기.ipynb <span style='color:#111;'> 69.02KB </span>","children":null,"spread":false},{"title":"딥러닝_모델_평가에_대해서.ipynb <span style='color:#111;'> 8.49MB </span>","children":null,"spread":false},{"title":"영수증_맞춤법_seq2seq로_해결하기(receipt_seq2seq)의_수정본.ipynb <span style='color:#111;'> 80.84KB </span>","children":null,"spread":false},{"title":"Transformer_(Attention_Is_All_You_Need)_구현하기.ipynb <span style='color:#111;'> 48.48KB </span>","children":null,"spread":false},{"title":"pyLDAvis_를_이용한_Latent_Dirichlet_Allocation_시각화.ipynb <span style='color:#111;'> 45.58KB </span>","children":null,"spread":false},{"title":"자연어_처리_텐서플로우로_텍스트_분류_튜토리얼(2).ipynb <span style='color:#111;'> 49.80KB </span>","children":null,"spread":false},{"title":"(NLP)Transformer.ipynb <span style='color:#111;'> 41.82KB </span>","children":null,"spread":false},{"title":"BERT_End_to_End_(Fine_tuning_+_Predicting)_with_Cloud_TPU_Sentence_and_Sentence_Pair_Classification_Tasks.ipynb <span style='color:#111;'> 613.73KB </span>","children":null,"spread":false},{"title":"BERT(Bidirectional_Encoder_Representations_from_Transformers)_구현(기준).ipynb <span style='color:#111;'> 68.60KB </span>","children":null,"spread":false},{"title":"Spellcheck.ipynb <span style='color:#111;'> 6.46KB </span>","children":null,"spread":false},{"title":"Transformer용_텍스트_데이터_전처리하기.ipynb <span style='color:#111;'> 6.09KB </span>","children":null,"spread":false},{"title":"py_hanspell.ipynb <span style='color:#111;'> 9.07KB </span>","children":null,"spread":false},{"title":"PyTorch_및_TensorFlow_2_0을위한_최신_자연_언어_처리.ipynb <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"Word2Vec_Embedding.ipynb <span style='color:#111;'> 34.86KB </span>","children":null,"spread":false},{"title":"Pre_trained_Word_Embedding_03_16.ipynb <span style='color:#111;'> 1004.84KB </span>","children":null,"spread":false},{"title":"AutoCorrect_Spell_check_in_Python.ipynb <span style='color:#111;'> 10.52KB </span>","children":null,"spread":false},{"title":"Transformer_(Attention_Is_All_You_Need)_구현하기의_사본.ipynb <span style='color:#111;'> 49.99KB </span>","children":null,"spread":false},{"title":"Document_Similarity_Jaccard_similarity.ipynb <span style='color:#111;'> 40.53KB </span>","children":null,"spread":false},{"title":"naver_review_classifications_pytorch_kobert_ipynb의_사본.ipynb <span style='color:#111;'> 13.13KB </span>","children":null,"spread":false},{"title":"간단한_seq2seq_만들기(Simple_seq2seq).ipynb <span style='color:#111;'> 48.78KB </span>","children":null,"spread":false},{"title":"bert_babble.ipynb <span style='color:#111;'> 24.69KB </span>","children":null,"spread":false},{"title":"자연어_처리_텐서플로우로_텍스트_분류_튜토리얼.ipynb <span style='color:#111;'> 55.06KB </span>","children":null,"spread":false},{"title":"Pre_trained_Word_Embedding_GloVe.ipynb <span style='color:#111;'> 1.65MB </span>","children":null,"spread":false},{"title":"Transformer_임시 수정본.ipynb <span style='color:#111;'> 49.48KB </span>","children":null,"spread":false},{"title":"영수증_맞춤법_seq2seq로_해결하기(receipt_seq2seq).ipynb <span style='color:#111;'> 208.03KB </span>","children":null,"spread":false},{"title":"레벤슈타인_거리.ipynb <span style='color:#111;'> 8.92KB </span>","children":null,"spread":false},{"title":"자연어_처리_케라스로_텍스트_분류.ipynb <span style='color:#111;'> 1.56MB </span>","children":null,"spread":false},{"title":"GloVe_Embedding.ipynb <span style='color:#111;'> 43.44KB </span>","children":null,"spread":false},{"title":"Keras_Word_Embedding(14labels).ipynb <span style='color:#111;'> 2.07MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]