interpretable_machine_learning_with_python:训练可解释的ML模型,解释ML模型以及调试ML模型以确保准确性,辨别力和安全性的技术示例-源码

上传者: 42137723 | 上传时间: 2021-11-16 23:21:24 | 文件大小: 10.74MB | 文件类型: -
使用Python负责任的机器学习 训练可解释机器学习(ML)模型,解释ML模型以及调试ML模型的准确性,辨别力和安全性的技术示例。 概述 随着越来越多的经济体接受自动化和数据驱动的决策,使用人工智能(AI)和ML模型可能会变得越来越普遍。 尽管这些预测系统可能非常准确,但它们常常是难以理解且不受欢迎的黑匣子,它们仅产生数字预测,而没有附带的解释。 不幸的是,最近的研究和最近的事件引起了人们对脆弱的AI和ML系统中数学和社会学缺陷的关注,但是从业人员通常没有正确的工具来撬开ML模型并对其进行调试。 本系列笔记本介绍了几种方法,这些方法可以提高ML模型的透明度,责任感和可信赖性。 如果您是数据科学家或分析师,并且想要训练准确,可解释的ML模型,向您的客户或经理解释ML模型,测试这些模型的安全漏洞或社会歧视,或者您担心文档,验证或法规方面的问题要求,那么本系列Jupyter笔记本非常适合您! (

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明