上传者: 42137723
|
上传时间: 2021-11-16 23:21:24
|
文件大小: 10.74MB
|
文件类型: -
使用Python负责任的机器学习
训练可解释机器学习(ML)模型,解释ML模型以及调试ML模型的准确性,辨别力和安全性的技术示例。
概述
随着越来越多的经济体接受自动化和数据驱动的决策,使用人工智能(AI)和ML模型可能会变得越来越普遍。 尽管这些预测系统可能非常准确,但它们常常是难以理解且不受欢迎的黑匣子,它们仅产生数字预测,而没有附带的解释。 不幸的是,最近的研究和最近的事件引起了人们对脆弱的AI和ML系统中数学和社会学缺陷的关注,但是从业人员通常没有正确的工具来撬开ML模型并对其进行调试。 本系列笔记本介绍了几种方法,这些方法可以提高ML模型的透明度,责任感和可信赖性。 如果您是数据科学家或分析师,并且想要训练准确,可解释的ML模型,向您的客户或经理解释ML模型,测试这些模型的安全漏洞或社会歧视,或者您担心文档,验证或法规方面的问题要求,那么本系列Jupyter笔记本非常适合您! (