[{"title":"( 9 个子文件 553KB ) GBDT_Simple_Tutorial:python实现GBDT的回归、二分类以及多分类,将算法流程详情进行展示解读并可视化,庖丁解牛地理解GBDT。Gradient Boosting Decision Trees regression, dichotomy and multi-classification are realized based on python, and the details of algorithm flow are displayed, interpreted and visu","children":[{"title":"GBDT_Simple_Tutorial-master","children":[{"title":"展示图片","children":[{"title":"all_trees.png <span style='color:#111;'> 617.68KB </span>","children":null,"spread":false}],"spread":true},{"title":"GBDT","children":[{"title":"decision_tree.py <span style='color:#111;'> 5.85KB </span>","children":null,"spread":false},{"title":"loss_function.py <span style='color:#111;'> 5.13KB </span>","children":null,"spread":false},{"title":"gbdt.py <span style='color:#111;'> 8.35KB </span>","children":null,"spread":false},{"title":"tree_plot.py <span style='color:#111;'> 10.49KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 11.08KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 81B </span>","children":null,"spread":false},{"title":"example.py <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]