GMM:Pyspark 中的高斯混合模型实现-源码

上传者: 42134168 | 上传时间: 2021-07-10 12:03:45 | 文件大小: 11KB | 文件类型: ZIP
通用汽车 Pyspark 中的高斯混合模型实现 GMM 算法将整个数据集建模为高斯分布的有限混合,每个分布由均值向量、协方差矩阵和混合权重进行参数化。 这里每个点属于每个集群的概率与集群统计信息一起计算。 pyspark 中 GMM 的这种分布式实现使用期望最大化算法估计参数,并且只考虑每个分量的对角协方差矩阵。 如何跑步 有两种方法可以运行此代码。 在您的 Python 程序中使用该库。 您可以通过调用函数 GMMModel.trainGMM(data,k,n_iter,ct) 来训练 GMM 模型,其中 data is an RDD(of dense or Sparse Vector), k is the number of components/clusters, n_iter is the number of iteration

文件下载

资源详情

[{"title":"( 5 个子文件 11KB ) GMM:Pyspark 中的高斯混合模型实现-源码","children":[{"title":"GMM-master","children":[{"title":"PyGMM.py <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"GMMclustering.py <span style='color:#111;'> 8.15KB </span>","children":null,"spread":false},{"title":"GMMModel.py <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明