Phase-2-Project:使用回归模型预测房屋价格-源码

上传者: 42134038 | 上传时间: 2021-06-01 17:01:32 | 文件大小: 7.11MB | 文件类型: ZIP
国王郡房屋定价回归分析 (技术演示文稿位于Final Notebook.ipynb 介绍 该项目使用线性回归模型来最好地预测华盛顿州西雅图市的房价。 资料总览 提供的数据集代表在华盛顿州金斯县出售的17,290处物业。 对于每个属性,我们都得到了有关平方英尺,房屋状况,房间数和浴室数量,位置,出售日期等其他详细信息。 探索性数据分析 提供的数据干净整洁,没有任何空值,因此为我们的EDA准备的大多数数据都与处理离群值有关。 在浏览我们的数据时,很清楚地理位置与房价之间的关联性。 您可以在下面的热图和邮政编码条形图中看到该县某些地区的平ASP格比其他地区的平ASP格高多少。 在EDA流程中,对统计进行了以下测试: 位于KC北部与KC南部的平均房价-存在统计差异; 北部的房屋平ASP格较高。 有海滨和没有海滨的房屋的平均房价-存在统计差异,海滨房屋的均值较高。 某些等级的房屋的平均房

文件下载

资源详情

[{"title":"( 32 个子文件 7.11MB ) Phase-2-Project:使用回归模型预测房屋价格-源码","children":[{"title":"Phase-2-Project-main","children":[{"title":"Images","children":[{"title":"Grade by Zipcode.png <span style='color:#111;'> 23.68KB </span>","children":null,"spread":false},{"title":"Price by Zipcode.png <span style='color:#111;'> 24.19KB </span>","children":null,"spread":false},{"title":"Property Price Heat Map.png <span style='color:#111;'> 197.09KB </span>","children":null,"spread":false},{"title":"Age by Zipcode.png <span style='color:#111;'> 23.99KB </span>","children":null,"spread":false},{"title":"Year Built Lineplot.png <span style='color:#111;'> 74.18KB </span>","children":null,"spread":false},{"title":"Distance Scatterplot.png <span style='color:#111;'> 104.72KB </span>","children":null,"spread":false}],"spread":true},{"title":"model.pickle <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"Holdout Predictions - Poly KBest.ipynb <span style='color:#111;'> 36.02KB </span>","children":null,"spread":false},{"title":"other_info.pickle <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"Holdout Predictions - Log Method-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"Final_Notebook-checkpoint.ipynb <span style='color:#111;'> 1.25MB </span>","children":null,"spread":false},{"title":"Holdout Predictions - Poly KBest-checkpoint.ipynb <span style='color:#111;'> 36.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"Kings County Real Estate Analysis.pdf <span style='color:#111;'> 238.05KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.02KB </span>","children":null,"spread":false},{"title":"Code","children":[{"title":"Holdout Predictions - Log Method.ipynb <span style='color:#111;'> 32.41KB </span>","children":null,"spread":false},{"title":"Kings County Raw Data Analysis.ipynb <span style='color:#111;'> 2.49MB </span>","children":null,"spread":false},{"title":"housing_preds_ryan_lewis_2.csv <span style='color:#111;'> 97.25KB </span>","children":null,"spread":false},{"title":"model2.pickle <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"Holdout Predictions - Log Method-checkpoint.ipynb <span style='color:#111;'> 36.11KB </span>","children":null,"spread":false},{"title":"Kings County Raw Data Analysis-checkpoint.ipynb <span style='color:#111;'> 2.49MB </span>","children":null,"spread":false},{"title":"Holdout Predictions-checkpoint.ipynb <span style='color:#111;'> 8.24KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Final_Notebook.ipynb <span style='color:#111;'> 1.25MB </span>","children":null,"spread":false},{"title":"Data","children":[{"title":"kc_house_data_test_features.csv <span style='color:#111;'> 456.22KB </span>","children":null,"spread":false},{"title":"kc_tract_10.sbx <span style='color:#111;'> 292B </span>","children":null,"spread":false},{"title":"kc_tract_10.dbf <span style='color:#111;'> 64.24KB </span>","children":null,"spread":false},{"title":"kc_tract_10.sbn <span style='color:#111;'> 3.87KB </span>","children":null,"spread":false},{"title":"kc_tract_10.prj <span style='color:#111;'> 569B </span>","children":null,"spread":false},{"title":"kc_tract_10.shp.xml <span style='color:#111;'> 21.72KB </span>","children":null,"spread":false},{"title":"kc_tract_10.shx <span style='color:#111;'> 3.21KB </span>","children":null,"spread":false},{"title":"housing_preds_ryan_lewis.csv <span style='color:#111;'> 96.90KB </span>","children":null,"spread":false},{"title":"kc_tract_10.shp <span style='color:#111;'> 1.39MB </span>","children":null,"spread":false},{"title":"kc_house_data_train.csv <span style='color:#111;'> 2.00MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明