machine-learning-code-writing:机器学习算法的数学推导和纯Python代码实现

上传者: 42133680 | 上传时间: 2022-08-18 18:50:36 | 文件大小: 972KB | 文件类型: ZIP
机器学习代码编写 机器学习算法的数学推导和纯Python代码实现。

文件下载

资源详情

[{"title":"( 34 个子文件 972KB ) machine-learning-code-writing:机器学习算法的数学推导和纯Python代码实现","children":[{"title":"machine-learning-code-writing-master","children":[{"title":"ridge","children":[{"title":"ridge_experiment.ipynb <span style='color:#111;'> 51.26KB </span>","children":null,"spread":false},{"title":"abalone.csv <span style='color:#111;'> 187.46KB </span>","children":null,"spread":false},{"title":"ridge.py <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"lasso","children":[{"title":"lasso.py <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":"example.dat <span style='color:#111;'> 84.71KB </span>","children":null,"spread":false},{"title":"lasso_experiment.ipynb <span style='color:#111;'> 42.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"hard margin svm","children":[{"title":"Hard_Margin_SVM.py <span style='color:#111;'> 5.47KB </span>","children":null,"spread":false},{"title":"svm_hard_margin.ipynb <span style='color:#111;'> 37.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"k nearest neighbor","children":[{"title":"knn.ipynb <span style='color:#111;'> 257.61KB </span>","children":null,"spread":false},{"title":"k_nearest_neighbor.py <span style='color:#111;'> 7.95KB </span>","children":null,"spread":false}],"spread":true},{"title":"nolinear_svm","children":[{"title":"no_linear_svm.ipynb <span style='color:#111;'> 49.34KB </span>","children":null,"spread":false},{"title":"kernel_svm.py <span style='color:#111;'> 6.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"cart","children":[{"title":"example_data.csv <span style='color:#111;'> 423B </span>","children":null,"spread":false},{"title":"cart.ipynb <span style='color:#111;'> 16.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"perceptron","children":[{"title":"perceptron.ipynb <span style='color:#111;'> 38.56KB </span>","children":null,"spread":false}],"spread":true},{"title":"neural networks","children":[{"title":"neural_networks.ipynb <span style='color:#111;'> 373.49KB </span>","children":null,"spread":false}],"spread":true},{"title":"id3","children":[{"title":"example_data.csv <span style='color:#111;'> 423B </span>","children":null,"spread":false},{"title":"ID3.py <span style='color:#111;'> 2.82KB </span>","children":null,"spread":false},{"title":"ID3.ipynb <span style='color:#111;'> 17.56KB </span>","children":null,"spread":false}],"spread":true},{"title":"logistic regression","children":[{"title":"lr_experiment.ipynb <span style='color:#111;'> 58.19KB </span>","children":null,"spread":false},{"title":"lr_class.py <span style='color:#111;'> 4.08KB </span>","children":null,"spread":false},{"title":"lr_results.png <span style='color:#111;'> 42.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"naive bayes","children":[{"title":"naive_bayes.ipynb <span style='color:#111;'> 5.57KB </span>","children":null,"spread":false},{"title":"naive_bayes.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false}],"spread":true},{"title":"soft_margin_svm","children":[{"title":"soft_margin_svm.ipynb <span style='color:#111;'> 7.86KB </span>","children":null,"spread":false},{"title":"Qp-cvxopt.pdf <span style='color:#111;'> 138.73KB </span>","children":null,"spread":false},{"title":"soft_margin_svm.py <span style='color:#111;'> 8.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"linar regression","children":[{"title":"linar_regression_experiment.ipynb <span style='color:#111;'> 72.44KB </span>","children":null,"spread":false},{"title":"lr_class.py <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false}],"spread":true},{"title":"charpter23_hmm","children":[{"title":"charpter_23.ipynb <span style='color:#111;'> 5.78KB </span>","children":null,"spread":false}],"spread":false},{"title":"charpter_15","children":[{"title":"compare_and_tuning.ipynb <span style='color:#111;'> 69.82KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 124B </span>","children":null,"spread":false},{"title":"bayesian network","children":[{"title":"pgmpy_bnn.ipynb <span style='color:#111;'> 13.93KB </span>","children":null,"spread":false}],"spread":false},{"title":"gbdt","children":[{"title":"gbdt.py <span style='color:#111;'> 173B </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明