Scorecard-Bundle:A High-level Scorecard Modeling API | 评分卡建模尽在于此-源码

上传者: 42132354 | 上传时间: 2021-06-20 10:36:40 | 文件大小: 2.1MB | 文件类型: ZIP
记分卡捆绑 高级记分卡建模API评分卡建模尽在于此 文档页面|文档页面: : 自述文件 介绍 Scorecard-Bundle是一个高级Scorecard建模API ,它易于使用且与Scikit-Learn保持一致。 它涵盖了训练计分卡模型的主要步骤,例如使用ChiMerge进行特征离散化,WOE编码,具有信息值和共线性的特征评估,基于Logistic回归的计分卡模型以及针对二元分类任务的模型评估。 Scorecard-Bundle中的所有变换器和模型类均符合Scikit-Learn的fit-transform-predict约定。 一个完整的示例,展示了如何使用记分卡捆绑包构建记分卡:示例笔记本 在https://scorecard-bundle.bubu.blue/中查看详细且对读者更友好的文档 在记分卡捆绑软件中,基于Mamdouh Refaat的书“信用风险记分卡:使用SA

文件下载

资源详情

[{"title":"( 61 个子文件 2.1MB ) Scorecard-Bundle:A High-level Scorecard Modeling API | 评分卡建模尽在于此-源码","children":[{"title":"Scorecard-Bundle-master","children":[{"title":"docs","children":[{"title":"Notebooks","children":[{"title":"README.md <span style='color:#111;'> 356B </span>","children":null,"spread":false}],"spread":true},{"title":"API","children":[{"title":"4.model.md <span style='color:#111;'> 4.57KB </span>","children":null,"spread":false},{"title":"1.fd.md <span style='color:#111;'> 7.28KB </span>","children":null,"spread":false},{"title":"2.woe.md <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"3.fs.md <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"6.mi.md <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"5.me.md <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 61B </span>","children":null,"spread":false}],"spread":true},{"title":"pics","children":[{"title":"framework.svg <span style='color:#111;'> 565.62KB </span>","children":null,"spread":false},{"title":"fe_eg1.PNG <span style='color:#111;'> 112.11KB </span>","children":null,"spread":false},{"title":"heatmap.PNG <span style='color:#111;'> 27.34KB </span>","children":null,"spread":false},{"title":"framework.png <span style='color:#111;'> 40.66KB </span>","children":null,"spread":false},{"title":"fe_eg2.PNG <span style='color:#111;'> 80.22KB </span>","children":null,"spread":false},{"title":"eval.PNG <span style='color:#111;'> 100.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"_config.yml <span style='color:#111;'> 227B </span>","children":null,"spread":false},{"title":"CNAME <span style='color:#111;'> 26B </span>","children":null,"spread":false},{"title":"Gemfile <span style='color:#111;'> 139B </span>","children":null,"spread":false},{"title":"Chinese","children":[{"title":"2.usage.md <span style='color:#111;'> 24.77KB </span>","children":null,"spread":false},{"title":"1.intro.md <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false}],"spread":true},{"title":".debug.yml <span style='color:#111;'> 44B </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 366B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"English","children":[{"title":"2.usage.md <span style='color:#111;'> 26.38KB </span>","children":null,"spread":false},{"title":"1.intro.md <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false}],"spread":true}],"spread":false},{"title":"ScorecardBundle.xmind <span style='color:#111;'> 76.66KB </span>","children":null,"spread":false},{"title":"pics","children":[{"title":"framework.svg <span style='color:#111;'> 565.62KB </span>","children":null,"spread":false},{"title":"fe_eg1.PNG <span style='color:#111;'> 69.95KB </span>","children":null,"spread":false},{"title":"heatmap.PNG <span style='color:#111;'> 27.34KB </span>","children":null,"spread":false},{"title":"framework.png <span style='color:#111;'> 40.66KB </span>","children":null,"spread":false},{"title":"fe_eg2.PNG <span style='color:#111;'> 50.46KB </span>","children":null,"spread":false},{"title":"eval.PNG <span style='color:#111;'> 100.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"_config.yml <span style='color:#111;'> 26B </span>","children":null,"spread":false},{"title":"backup.md <span style='color:#111;'> 44.68KB </span>","children":null,"spread":false},{"title":"scorecardbundle","children":[{"title":"model_evaluation","children":[{"title":"__init__.py <span style='color:#111;'> 26B </span>","children":null,"spread":false},{"title":"ModelEvaluation.py <span style='color:#111;'> 18.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"model_training","children":[{"title":"__init__.py <span style='color:#111;'> 24B </span>","children":null,"spread":false},{"title":"LogisticRegressionScoreCard.py <span style='color:#111;'> 14.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"feature_selection","children":[{"title":"FeatureSelection.py <span style='color:#111;'> 6.58KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 27B </span>","children":null,"spread":false}],"spread":true},{"title":"feature_encoding","children":[{"title":"__init__.py <span style='color:#111;'> 26B </span>","children":null,"spread":false},{"title":"WOE.py <span style='color:#111;'> 6.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"model_tuning","children":[{"title":"placeholder.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 22B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 25B </span>","children":null,"spread":false},{"title":"model_score_binning","children":[{"title":"placeholder.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 29B </span>","children":null,"spread":false}],"spread":true},{"title":"model_interpretation","children":[{"title":"__init__.py <span style='color:#111;'> 30B </span>","children":null,"spread":false},{"title":"ScorecardExplainer.py <span style='color:#111;'> 5.11KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils","children":[{"title":"__init__.py <span style='color:#111;'> 15B </span>","children":null,"spread":false},{"title":"func_numpy.py <span style='color:#111;'> 7.53KB </span>","children":null,"spread":false}],"spread":false},{"title":"feature_discretization","children":[{"title":"ChiMerge.py <span style='color:#111;'> 16.55KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 32B </span>","children":null,"spread":false},{"title":"FeatureIntervalAdjustment.py <span style='color:#111;'> 9.91KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 25B </span>","children":null,"spread":false},{"title":"examples","children":[{"title":"[Example] Training a Scorecard model using California Housing Dataset.ipynb <span style='color:#111;'> 1.58MB </span>","children":null,"spread":false}],"spread":true},{"title":"setup.py <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 12.96KB </span>","children":null,"spread":false},{"title":"LICENSE.txt <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明