SRGAN-PyTorch:超分辨率纸的简单而完整的实现-源码

上传者: 42132352 | 上传时间: 2021-02-26 12:05:10 | 文件大小: 624KB | 文件类型: ZIP
SRGAN-PyTorch 概述 该存储库包含对进行的逐点PyTorch重新实现。 目录 关于使用生成对抗网络的逼真的单图像超分辨率 如果您不熟悉SRGAN,请直接从本文中摘录以下内容: 尽管使用更快,更深的卷积神经网络在单图像超分辨率的准确性和速度方面取得了突破,但仍然存在一个主要问题仍未解决:当在较大的放大比例下进行超分辨率处理时,如何恢复更精细的纹理细节? 基于优化的超分辨率方法的行为主要由目标函数的选择决定。 最近的工作主要集中在最小化均方重构误差上。 得出的估计值具有很高的峰值信噪比,但是它们通常缺少高频细节,并且在某种意义上说它们无法满足更高分辨率下的保真度,因此在感觉上并不令人满意。 在本文中,我们介绍了SRGAN,这是一种用于图像超分辨率(SR)的生成对抗网络(GAN)。 据我们所知,它是第一个能够为4倍放大因子推断出逼真的自然图像的框架。 为此,我们提出了一种感知损失函

文件下载

资源详情

[{"title":"( 34 个子文件 624KB ) SRGAN-PyTorch:超分辨率纸的简单而完整的实现-源码","children":[{"title":"SRGAN-PyTorch-master","children":[{"title":"test_image.py <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"download_dataset.sh <span style='color:#111;'> 284B </span>","children":null,"spread":false},{"title":"niqe_image_params.mat <span style='color:#111;'> 10.66KB </span>","children":null,"spread":false},{"title":"crop_image.py <span style='color:#111;'> 6.17KB </span>","children":null,"spread":false},{"title":"create_dataset.py <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"split_image.py <span style='color:#111;'> 2.82KB </span>","children":null,"spread":false},{"title":"create_dataset_for_kernelGAN.py <span style='color:#111;'> 4.46KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.57KB </span>","children":null,"spread":false},{"title":"create_dataset_for_bicubic.py <span style='color:#111;'> 3.75KB </span>","children":null,"spread":false}],"spread":true},{"title":"train.py <span style='color:#111;'> 5.22KB </span>","children":null,"spread":false},{"title":"assets","children":[{"title":"result.png <span style='color:#111;'> 562.17KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"test_benchmark.py <span style='color:#111;'> 3.63KB </span>","children":null,"spread":false},{"title":"trainer.py <span style='color:#111;'> 18.99KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 67B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"tester.py <span style='color:#111;'> 12.49KB </span>","children":null,"spread":false},{"title":"test_video.py <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"srgan_pytorch","children":[{"title":"models","children":[{"title":"generator.py <span style='color:#111;'> 4.52KB </span>","children":null,"spread":false},{"title":"discriminator.py <span style='color:#111;'> 2.99KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 751B </span>","children":null,"spread":false}],"spread":true},{"title":"loss.py <span style='color:#111;'> 10.17KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 8.12KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 806B </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"common.py <span style='color:#111;'> 5.35KB </span>","children":null,"spread":false},{"title":"estimate.py <span style='color:#111;'> 4.30KB </span>","children":null,"spread":false},{"title":"calculate_ssim.py <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 875B </span>","children":null,"spread":false},{"title":"calculate_niqe.py <span style='color:#111;'> 8.23KB </span>","children":null,"spread":false},{"title":"transform.py <span style='color:#111;'> 2.23KB </span>","children":null,"spread":false},{"title":"device.py <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"kernelgan.py <span style='color:#111;'> 6.95KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 12.21KB </span>","children":null,"spread":false},{"title":"hubconf.py <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • Citee_ :
    可以给个训练的过程嘛?
    2021-05-23
  • haiwanglail :
    博主写个说明文档呗 里面文件夹有点多
    2021-03-05

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明