[{"title":"( 52 个子文件 98.26MB ) me_recognition:用于微表情识别的CapsuleNet(IEEE FG 2019)-源码","children":[{"title":"me_recognition-master","children":[{"title":"smic_processing.py <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"train_me_loso.py <span style='color:#111;'> 7.08KB </span>","children":null,"spread":false},{"title":"result_log_reproduced.csv <span style='color:#111;'> 9.41KB </span>","children":null,"spread":false},{"title":"capsule","children":[{"title":"data","children":[{"title":"dataset.py <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":"me.py <span style='color:#111;'> 2.43KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 69B </span>","children":null,"spread":false}],"spread":true},{"title":"loss","children":[{"title":"losses.py <span style='color:#111;'> 515B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 22B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"utils.py <span style='color:#111;'> 2.32KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 58B </span>","children":null,"spread":false},{"title":"notifications.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"evaluations","children":[{"title":"eval.py <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 39B </span>","children":null,"spread":false}],"spread":true},{"title":"modules","children":[{"title":"capsule_layers.py <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false},{"title":"capsule_net.py <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 418B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 88B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"outputs","children":[{"title":"scores_capsule_vgg_sampled_fer_freeze.pkl <span style='color:#111;'> 11.03KB </span>","children":null,"spread":false},{"title":"scores_cnn_resnet_no_macro.pkl <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false},{"title":"scores_capsule_vgg_sampled.pkl <span style='color:#111;'> 3.85KB </span>","children":null,"spread":false},{"title":"scores_capsule_vgg_sampled_fer_not_freeze.pkl <span style='color:#111;'> 11.03KB </span>","children":null,"spread":false},{"title":"scores_capsule_resnet_sampled_freeze.pkl <span style='color:#111;'> 11.03KB </span>","children":null,"spread":false},{"title":"scores_capsule_resnet_sampled_fer_freeze.pkl <span style='color:#111;'> 11.03KB </span>","children":null,"spread":false},{"title":"scores_cnn_vgg11_no_macro.pkl <span style='color:#111;'> 72.93KB </span>","children":null,"spread":false},{"title":"scores_capsule_vgg_sampled_freeze.pkl <span style='color:#111;'> 11.03KB </span>","children":null,"spread":false},{"title":"scores_capsule_vgg_sampled_fer.pkl <span style='color:#111;'> 11.03KB </span>","children":null,"spread":false}],"spread":true},{"title":"get_result_log.py <span style='color:#111;'> 819B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"trained","children":[{"title":"model_state.pt <span style='color:#111;'> 52.86MB </span>","children":null,"spread":false},{"title":"scores_capsule_resnet_sampled_fer_freeze.pkl <span style='color:#111;'> 11.04KB </span>","children":null,"spread":false},{"title":"model.pt <span style='color:#111;'> 52.86MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false},{"title":"result_log.csv <span style='color:#111;'> 6.04KB </span>","children":null,"spread":false},{"title":"train_me_loso_baseline.py <span style='color:#111;'> 7.74KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"smic_apex.csv <span style='color:#111;'> 30.83KB </span>","children":null,"spread":false},{"title":"samm_apex.csv <span style='color:#111;'> 16.12KB </span>","children":null,"spread":false},{"title":"data_four_frames.csv <span style='color:#111;'> 273.93KB </span>","children":null,"spread":false},{"title":"~$SMIC-HS-E_annotation.xlsx <span style='color:#111;'> 171B </span>","children":null,"spread":false},{"title":"SMIC-HS-E_annotation.xlsx <span style='color:#111;'> 35.28KB </span>","children":null,"spread":false},{"title":"CASME2-ObjectiveClasses.xlsx <span style='color:#111;'> 18.26KB </span>","children":null,"spread":false},{"title":"samm_five_frames.csv <span style='color:#111;'> 79.94KB </span>","children":null,"spread":false},{"title":"SMIC-HS-E_annotation_orig.xlsx <span style='color:#111;'> 34.96KB </span>","children":null,"spread":false},{"title":"combined_3_class_gt.csv <span style='color:#111;'> 9.05KB </span>","children":null,"spread":false},{"title":"SAMM_Micro_FACS_Codes_v2.xlsx <span style='color:#111;'> 25.08KB </span>","children":null,"spread":false},{"title":"casme2_five_frames.csv <span style='color:#111;'> 90.37KB </span>","children":null,"spread":false},{"title":"casme_apex.csv <span style='color:#111;'> 18.31KB </span>","children":null,"spread":false},{"title":"CASME2-coding-20140508.xlsx <span style='color:#111;'> 24.59KB </span>","children":null,"spread":false},{"title":"combined_3class_gt.csv <span style='color:#111;'> 9.46KB </span>","children":null,"spread":false},{"title":"data_five_frames.csv <span style='color:#111;'> 342.74KB </span>","children":null,"spread":false},{"title":"data_apex.csv <span style='color:#111;'> 69.06KB </span>","children":null,"spread":false},{"title":"smic_five_frames.csv <span style='color:#111;'> 152.76KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]