pycid:基于pgmpy的因果影响图库-源码

上传者: 42131890 | 上传时间: 2021-03-31 14:10:16 | 文件大小: 631KB | 文件类型: ZIP
PyCID:因果影响图库 该软件包实现了因果影响图和分析方法,并且是项目的一部分。 pgmpy为,提供了定义CID和MACID,计算最佳策略和纳什均衡,研究干预措施的效果以及检查各种奖励措施的图形标准的方法。 安装 创建并激活或。 然后使用以下命令进行安装: python3 -m pip install pycid PyCID需要python 3.7或更高版本。 基本用法 # Import import pycid # Specify the nodes and edges of a simple CID cid = pycid . CID ([ ( 'S' , 'D' ), # add nodes S and D, and a link S -> D ( 'S' , 'U' ), # add node U, and a link S -> U ( '

文件下载

资源详情

[{"title":"( 60 个子文件 631KB ) pycid:基于pgmpy的因果影响图库-源码","children":[{"title":"pycid-master","children":[{"title":".github","children":[{"title":"ISSUE_TEMPLATE","children":[{"title":"bug_report.md <span style='color:#111;'> 702B </span>","children":null,"spread":false},{"title":"feature_request.md <span style='color:#111;'> 595B </span>","children":null,"spread":false}],"spread":true},{"title":"workflows","children":[{"title":"publish.yaml <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"code-check.yaml <span style='color:#111;'> 967B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"notebooks","children":[{"title":"CID_Incentives_Tutorial.ipynb <span style='color:#111;'> 384.43KB </span>","children":null,"spread":false},{"title":"fairness.ipynb <span style='color:#111;'> 53.14KB </span>","children":null,"spread":false},{"title":"generate_cid.ipynb <span style='color:#111;'> 32.14KB </span>","children":null,"spread":false},{"title":"CID_Basics_Tutorial.ipynb <span style='color:#111;'> 89.91KB </span>","children":null,"spread":false},{"title":"MACID_Basics_Tutorial.ipynb <span style='color:#111;'> 180.53KB </span>","children":null,"spread":false},{"title":"Reasoning_Patterns_Tutorial.ipynb <span style='color:#111;'> 86.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"setup.cfg <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 140B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.22KB </span>","children":null,"spread":false},{"title":".pre-commit-config.yaml <span style='color:#111;'> 813B </span>","children":null,"spread":false},{"title":"PACKAGING.md <span style='color:#111;'> 3.51KB </span>","children":null,"spread":false},{"title":"NOTICE <span style='color:#111;'> 571B </span>","children":null,"spread":false},{"title":".editorconfig <span style='color:#111;'> 301B </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"test_macid_base.py <span style='color:#111;'> 9.30KB </span>","children":null,"spread":false},{"title":"test_random.py <span style='color:#111;'> 726B </span>","children":null,"spread":false},{"title":"test_cid.py <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"test_examples.py <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false},{"title":"test_get_paths.py <span style='color:#111;'> 9.66KB </span>","children":null,"spread":false},{"title":"test_reasoning_patterns.py <span style='color:#111;'> 4.09KB </span>","children":null,"spread":false},{"title":"test_macid.py <span style='color:#111;'> 4.37KB </span>","children":null,"spread":false},{"title":"test_analyze.py <span style='color:#111;'> 13.91KB </span>","children":null,"spread":false},{"title":"test_cpd.py <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"test_notebooks.py <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"check-code.sh <span style='color:#111;'> 216B </span>","children":null,"spread":false},{"title":"test_causal_bayesian_network.py <span style='color:#111;'> 2.89KB </span>","children":null,"spread":false}],"spread":false},{"title":".gitignore <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false},{"title":"pyproject.toml <span style='color:#111;'> 208B </span>","children":null,"spread":false},{"title":"image.png <span style='color:#111;'> 11.30KB </span>","children":null,"spread":false},{"title":"pycid","children":[{"title":"core","children":[{"title":"causal_bayesian_network.py <span style='color:#111;'> 10.86KB </span>","children":null,"spread":false},{"title":"macid.py <span style='color:#111;'> 5.46KB </span>","children":null,"spread":false},{"title":"cid.py <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"macid_base.py <span style='color:#111;'> 18.90KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 418B </span>","children":null,"spread":false},{"title":"relevance_graph.py <span style='color:#111;'> 4.54KB </span>","children":null,"spread":false},{"title":"get_paths.py <span style='color:#111;'> 9.78KB </span>","children":null,"spread":false},{"title":"cpd.py <span style='color:#111;'> 13.07KB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 104B </span>","children":null,"spread":false},{"title":"examples","children":[{"title":"story_cids.py <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"story_macids.py <span style='color:#111;'> 16.60KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"simple_cbns.py <span style='color:#111;'> 467B </span>","children":null,"spread":false},{"title":"simple_cids.py <span style='color:#111;'> 4.43KB </span>","children":null,"spread":false},{"title":"simple_macids.py <span style='color:#111;'> 9.10KB </span>","children":null,"spread":false}],"spread":false},{"title":"analyze","children":[{"title":"response_incentive.py <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"effects.py <span style='color:#111;'> 654B </span>","children":null,"spread":false},{"title":"reasoning_patterns.py <span style='color:#111;'> 10.81KB </span>","children":null,"spread":false},{"title":"value_of_control.py <span style='color:#111;'> 6.13KB </span>","children":null,"spread":false},{"title":"value_of_information.py <span style='color:#111;'> 2.89KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 817B </span>","children":null,"spread":false},{"title":"requisite_graph.py <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"instrumental_control_incentive.py <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false}],"spread":false},{"title":"random","children":[{"title":"random_cpd.py <span style='color:#111;'> 974B </span>","children":null,"spread":false},{"title":"random_dag.py <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 178B </span>","children":null,"spread":false},{"title":"random_cid.py <span style='color:#111;'> 6.25KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明