SentimentMiner:微博情感分析与可视化-源码

上传者: 42131890 | 上传时间: 2021-12-20 14:30:06 | 文件大小: 11.16MB | 文件类型: -
情感矿工 微博(中文)情感分析与可视化 分析 分词和预处理 (基于HMM的监督学习)用于中文分词和标记 删除停用词 朴素贝叶斯分类器用于提取语音的有用部分以进行情感分类 特征提取 LDA模型将每个文档转换为概率向量 吉布斯抽样解决模型 回归模型 支持情绪极性和程度的SVR(支持向量回归) 网格搜索参数选择 出版物 李迪等。 “微博数据的情感分析。” 2014年,计算,通信和IT应用会议(ComComAp)IEEE。 IEEE,2014年。 可视化 主题分析 给定一个主题(关键字),返回所有相关的tweet及其情感,以彩色气泡表示。 气泡的颜色表示鸣叫的情感极性,而大小表示鸣叫的程度。 折线图中还显示了统计信息。 用户分析 给定用户,返回用户在特定时间发布的推文的计数和情感。 折线图和条形图用于显示结果。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明