bayesian-programming:只是测试几个包以进行贝叶斯推断和MCMC采样

上传者: 42131628 | 上传时间: 2024-04-25 15:42:46 | 文件大小: 2.77MB | 文件类型: ZIP
贝叶斯程序库 这是一个包含代码片段的存储库,我在其中使用了不同的Python Bayesian框架进行统计推断。 简单的例子包括: 线性/逻辑回归; 混合模型

文件下载

资源详情

[{"title":"( 27 个子文件 2.77MB ) bayesian-programming:只是测试几个包以进行贝叶斯推断和MCMC采样","children":[{"title":"bayesian-programming-master","children":[{"title":"PyMC3","children":[{"title":"2-mixture-model-pymc3.ipynb <span style='color:#111;'> 40.40KB </span>","children":null,"spread":false},{"title":"2-mixture-model-1D-pymc3.ipynb <span style='color:#111;'> 975.37KB </span>","children":null,"spread":false},{"title":"run-mixture-model.sh <span style='color:#111;'> 238B </span>","children":null,"spread":false},{"title":"5-Image-analysis.ipynb <span style='color:#111;'> 127.80KB </span>","children":null,"spread":false},{"title":"run-image-analysis.sh <span style='color:#111;'> 234B </span>","children":null,"spread":false},{"title":"4-weird-inflated-model.ipynb <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"debug-gp-memory.ipynb <span style='color:#111;'> 5.39KB </span>","children":null,"spread":false},{"title":"2-mixture-model-pymc3.py <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"1-normal-distribution-pymc3-checkpoint.ipynb <span style='color:#111;'> 1016.88KB </span>","children":null,"spread":false},{"title":"debug-gp-memory-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"2-mixture-model-1D-pymc3-checkpoint.ipynb <span style='color:#111;'> 975.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"1-normal-distribution-pymc3.ipynb <span style='color:#111;'> 5.21KB </span>","children":null,"spread":false},{"title":"3-mixture-model-2D-pymc3.ipynb <span style='color:#111;'> 15.46KB </span>","children":null,"spread":false},{"title":"5-image-analysis.py <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false}],"spread":false},{"title":"PyroAI","children":[{"title":"2-binomial-distribution.ipynb <span style='color:#111;'> 38.78KB </span>","children":null,"spread":false},{"title":"coin-example-tutorial.ipynb <span style='color:#111;'> 5.51KB </span>","children":null,"spread":false},{"title":"1-normal-distribution.ipynb <span style='color:#111;'> 144.97KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"1-normal-distribution-checkpoint.ipynb <span style='color:#111;'> 144.97KB </span>","children":null,"spread":false},{"title":"coin-example-tutorial-checkpoint.ipynb <span style='color:#111;'> 5.51KB </span>","children":null,"spread":false},{"title":"3-linear-regression-checkpoint.ipynb <span style='color:#111;'> 6.47KB </span>","children":null,"spread":false}],"spread":true},{"title":"3-linear-regression.ipynb <span style='color:#111;'> 6.47KB </span>","children":null,"spread":false}],"spread":true},{"title":"PyStan","children":[{"title":"1-normal-distribution-pystan.ipynb <span style='color:#111;'> 71.70KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"1-normal-distribution-pystan-checkpoint.ipynb <span style='color:#111;'> 71.70KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"NumPyro","children":[{"title":"1-multiple-linear-regression.ipynb <span style='color:#111;'> 124.37KB </span>","children":null,"spread":false},{"title":"2-logistic-regression.ipynb <span style='color:#111;'> 87.93KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"1-multiple-linear-regression-checkpoint.ipynb <span style='color:#111;'> 124.37KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 235B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明