federated-learning-on-raspberry-pi:该项目实施了OpenMined教程,并使用2个RPI(Raspberry Pi)模拟了分布式模型训练过程-源码

上传者: 42131414 | 上传时间: 2021-09-11 17:26:17 | 文件大小: 63MB | 文件类型: ZIP
使用Raspberry PI(PySyft)进行联合学习 我们是一群从安全和私密AI奖学金挑战研究小组PyTorch机器人学者和共同致力于实现 教程由从 。 我们将在两个Raspberry Pi上设置PySyft,并学习如何通过PySyft在Raspberry Pi上训练递归神经网络。 项目目的 在Raspberry Pi(RPI)上使用联合学习的目的是在设备上构建模型,从而不必将数据移到集中式服务器。 除了增加隐私性外,FL还适用于物联网应用程序,因为可以在设备上进行培训,而不必在设备和中央服务器之间传递数据。 该项目实现了OpenMined教程,该项目使用2个RPI来模拟该过程,以将一个人的姓氏及其最有可能的起源语言分类。 了解更多关于这个被写的文章中 联合学习? 您想了解有关联合学习的更多信息吗? 别再看了! 我们的团队准备了几篇文章来帮助您快速入门: 树莓派? 您想知道需

文件下载

资源详情

[{"title":"( 46 个子文件 63MB ) federated-learning-on-raspberry-pi:该项目实施了OpenMined教程,并使用2个RPI(Raspberry Pi)模拟了分布式模型训练过程-源码","children":[{"title":"federated-learning-on-raspberry-pi-master","children":[{"title":".gitignore <span style='color:#111;'> 10B </span>","children":null,"spread":false},{"title":"Alejandro Ahumada","children":[{"title":"README.md <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"Federated Recurrent Neural Network.ipynb <span style='color:#111;'> 75.84KB </span>","children":null,"spread":false},{"title":"logo","children":[{"title":"export","children":[{"title":"PyTorch-Robotics_Logo_v001@2x.png <span style='color:#111;'> 47.17KB </span>","children":null,"spread":false}],"spread":true},{"title":"PyTorch-Robotics_Logo_v001.ai <span style='color:#111;'> 1.79MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"images","children":[{"title":"pullrequest.png <span style='color:#111;'> 112.13KB </span>","children":null,"spread":false},{"title":"savetogithub2.png <span style='color:#111;'> 64.91KB </span>","children":null,"spread":false},{"title":"fork.png <span style='color:#111;'> 104.81KB </span>","children":null,"spread":false},{"title":"notebook.png <span style='color:#111;'> 101.57KB </span>","children":null,"spread":false},{"title":"federated-learning.png <span style='color:#111;'> 262.85KB </span>","children":null,"spread":false},{"title":"savetogithub.png <span style='color:#111;'> 67.24KB </span>","children":null,"spread":false},{"title":"pullrequest2.png <span style='color:#111;'> 117.48KB </span>","children":null,"spread":false}],"spread":true},{"title":"Temitope Oladokun <span style='color:#111;'> 41.36KB </span>","children":null,"spread":false},{"title":"Char_rnn_classification.ipynb <span style='color:#111;'> 12.15KB </span>","children":null,"spread":false},{"title":"Elena Kutanov","children":[{"title":"README.md <span style='color:#111;'> 375B </span>","children":null,"spread":false},{"title":"Federated Recurrent Neural Network.ipynb <span style='color:#111;'> 62.87KB </span>","children":null,"spread":false},{"title":"Setup guide.pdf <span style='color:#111;'> 777.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 9.71KB </span>","children":null,"spread":false},{"title":"Ivoline Ngong","children":[{"title":"Federated_Learning_With_LSTM.ipynb <span style='color:#111;'> 69.35KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"labels.txt <span style='color:#111;'> 219.73KB </span>","children":null,"spread":false},{"title":"reviews.txt <span style='color:#111;'> 32.12MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Nirupama","children":[{"title":"README.MD <span style='color:#111;'> 967B </span>","children":null,"spread":false},{"title":"Char_rnn_classification.ipynb <span style='color:#111;'> 982B </span>","children":null,"spread":false}],"spread":true},{"title":"Sushil Ghimire","children":[{"title":".ipynb_checkpoints","children":[{"title":"FMNIST_FL-checkpoint.ipynb <span style='color:#111;'> 28.76KB </span>","children":null,"spread":false}],"spread":true},{"title":"FMNIST_FL.ipynb <span style='color:#111;'> 28.76KB </span>","children":null,"spread":false}],"spread":true},{"title":"PyTorch Wheels","children":[{"title":"torch-1.2.0a0+8554416-cp37-cp37m-linux_armv7l.whl <span style='color:#111;'> 24.80MB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"torch-1.0.0a0+8322165-cp37-cp37m-linux_armv7l.whl <span style='color:#111;'> 22.92MB </span>","children":null,"spread":false},{"title":"How to build PyTorch for Raspberry Pi.md <span style='color:#111;'> 3.60KB </span>","children":null,"spread":false}],"spread":true},{"title":"Raspberry-Pi-on-Virtual-Worker.md <span style='color:#111;'> 5.12KB </span>","children":null,"spread":false},{"title":"Ebinbin Ajagun","children":[{"title":"images","children":[{"title":"cifar_data.png <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false}],"spread":false},{"title":"Federated_Learning_CIFAR10.ipynb <span style='color:#111;'> 182.59KB </span>","children":null,"spread":false}],"spread":true},{"title":"Federated learning on Raspberry Pi.md <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false},{"title":"Command Line","children":[{"title":"Environment variables <span style='color:#111;'> 109B </span>","children":null,"spread":false},{"title":"Install PyTorch wheel file <span style='color:#111;'> 509B </span>","children":null,"spread":false},{"title":"Increase Swap Space <span style='color:#111;'> 292B </span>","children":null,"spread":false},{"title":"Install PyTorch on Raspberry Pi <span style='color:#111;'> 359B </span>","children":null,"spread":false},{"title":"Install Python 3.6.7 <span style='color:#111;'> 143B </span>","children":null,"spread":false},{"title":"Install PySyft on Raspberry Pi <span style='color:#111;'> 147B </span>","children":null,"spread":false},{"title":"Install PyTorch through PyTorch Wheel <span style='color:#111;'> 486B </span>","children":null,"spread":false}],"spread":false},{"title":"Federated Recurrent Neural Network","children":[{"title":"FederatedLearningRaspberryPIs.ipynb <span style='color:#111;'> 78.05KB </span>","children":null,"spread":false},{"title":"1. Step - Dependencies.ipynb <span style='color:#111;'> 11.17KB </span>","children":null,"spread":false},{"title":"Dataset <span style='color:#111;'> 47B </span>","children":null,"spread":false}],"spread":false},{"title":"Shivam Raisharma","children":[{"title":"My Journey.md <span style='color:#111;'> 5.65KB </span>","children":null,"spread":false}],"spread":false},{"title":"Sergio Valderrama","children":[{"title":"README.md <span style='color:#111;'> 4.37KB </span>","children":null,"spread":false},{"title":"FederatedLearningOnRaspberryPis_Windows.ipynb <span style='color:#111;'> 64.11KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明