[{"title":"( 24 个子文件 1.87MB ) 从加速度计数据预测牛体内的发情:基于Ling Yin的论文进行的工作。 根据加速度计数据预测奶牛的发情-源码","children":[{"title":"Predicting-Estrus-in-Cattle-from-Accelerometer-Data-master","children":[{"title":"svm_for_cow.pkl <span style='color:#111;'> 298.26KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"Script-checkpoint.ipynb <span style='color:#111;'> 352.07KB </span>","children":null,"spread":false},{"title":"Sensor Anomaly Detection - Streaming Model-checkpoint.ipynb <span style='color:#111;'> 242.98KB </span>","children":null,"spread":false},{"title":"Timeseries Anomaly Detection-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"Functions-checkpoint.ipynb <span style='color:#111;'> 24.03KB </span>","children":null,"spread":false},{"title":"Testing the functions module-checkpoint.ipynb <span style='color:#111;'> 47.54KB </span>","children":null,"spread":false}],"spread":true},{"title":"Timeseries Anomaly Detection.ipynb <span style='color:#111;'> 46.77KB </span>","children":null,"spread":false},{"title":"Cloud_model.h5 <span style='color:#111;'> 86.75KB </span>","children":null,"spread":false},{"title":"Parsed_Subset_Data_1s.csv <span style='color:#111;'> 569.94KB </span>","children":null,"spread":false},{"title":"activity_index.csv <span style='color:#111;'> 159B </span>","children":null,"spread":false},{"title":"Sensor Anomaly Detection - Streaming Model.ipynb <span style='color:#111;'> 242.98KB </span>","children":null,"spread":false},{"title":"Preprocessed_Final.csv <span style='color:#111;'> 502.72KB </span>","children":null,"spread":false},{"title":"Parsed_Subset_Data_2s.csv <span style='color:#111;'> 585.59KB </span>","children":null,"spread":false},{"title":"Script.ipynb <span style='color:#111;'> 350.26KB </span>","children":null,"spread":false},{"title":"labeled_cluster_output.csv <span style='color:#111;'> 343.58KB </span>","children":null,"spread":false},{"title":"new_format_data_cowdy.csv <span style='color:#111;'> 5.58MB </span>","children":null,"spread":false},{"title":"scaler_data <span style='color:#111;'> 718B </span>","children":null,"spread":false},{"title":"Functions.py <span style='color:#111;'> 17.75KB </span>","children":null,"spread":false},{"title":"Testing the functions module.ipynb <span style='color:#111;'> 49.13KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"Functions.cpython-36.pyc <span style='color:#111;'> 7.04KB </span>","children":null,"spread":false}],"spread":false},{"title":"Parsed_SubsetData_5s.csv <span style='color:#111;'> 619.65KB </span>","children":null,"spread":false},{"title":"Parsed_Subset_Data_5s.csv <span style='color:#111;'> 610.64KB </span>","children":null,"spread":false},{"title":"cow_activity_labeled.csv <span style='color:#111;'> 527.44KB </span>","children":null,"spread":false},{"title":"Functions.ipynb <span style='color:#111;'> 24.04KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]