Informer2020:AAAI 2021接受论文“ Informer”的GitHub存储库-源码

上传者: 42131342 | 上传时间: 2022-01-19 22:30:20 | 文件大小: 847KB | 文件类型: -
告密者:用于长序列时间序列预测的超越高效变压器(AAAI'21最佳论文) 这是以下文章中Informer的原始Pytorch实现: 。 特别感谢 Jieqi Peng @ 建立此存储库。 :triangular_flag: 新闻(2021年2月22日):我们提供了供友好使用。 :triangular_flag: 新闻(2021年2月8日):我们的线人论文被授予! 我们将继续进行这方面的研究,并对此仓库进行更新。 如果您发现我们的工作对您有帮助,请加注该回购并引用我们的论文。 图1. Informer的体系结构。 稀疏注意 自我注意分数形成一个长尾分布,其中“活动”查询位于“头”分数中,而“懒惰”查询位于“尾”区域中。 我们设计了ProbSparse Attention以选择“活动”查询而不是“惰性”查询。 带有Top-u查询的ProbSparse Attention通过概率分布形成了一个稀疏的Transformer。 Why not us

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明