tensorrt_demos:TensorRT YOLOv4,YOLOv3,SSD,MTCNN和GoogLeNet

上传者: 42131013 | 上传时间: 2021-07-12 10:36:03 | 文件大小: 168.95MB | 文件类型: ZIP
tensorrt_demos 展示如何使用TensorRT优化caffe / tensorflow / darknet模型并在NVIDIA Jetson或x86_64 PC平台上运行推理的示例。 在Jetson Nano上以约4.6 FPS运行优化的“ yolov4-416”物体检测器。 在Jetson Nano上以约4.9 FPS的速度运行优化的“ yolov3-416”物体检测器。 在Jetson Nano上以27〜28 FPS运行优化的“ ssd_mobilenet_v1_coco”对象检测器(“ trt_ssd_async.py”)。 在Jetson Nano上以6〜11 FPS运行非常精确的优化“ MTCNN”面部检测器。 在Jetson Nano上以“每张图像〜16毫秒(仅供参考)”运行优化的“ GoogLeNet”图像分类器。 除了Jetson Nano,所有演

文件下载

资源详情

[{"title":"( 86 个子文件 168.95MB ) tensorrt_demos:TensorRT YOLOv4,YOLOv3,SSD,MTCNN和GoogLeNet","children":[{"title":"tensorrt_demos-master","children":[{"title":"trt_googlenet.py <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"trt_googlenet_async.py <span style='color:#111;'> 5.89KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 393B </span>","children":null,"spread":false},{"title":"trt_yolo_cv.py <span style='color:#111;'> 3.10KB </span>","children":null,"spread":false},{"title":"trtNet.h <span style='color:#111;'> 3.64KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 29.19KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"ssd_tf.py <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false},{"title":"yolo_classes.py <span style='color:#111;'> 1.93KB </span>","children":null,"spread":false},{"title":"yolo_with_plugins.py <span style='color:#111;'> 12.10KB </span>","children":null,"spread":false},{"title":"mtcnn.py <span style='color:#111;'> 16.69KB </span>","children":null,"spread":false},{"title":"visualization.py <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"camera.py <span style='color:#111;'> 10.36KB </span>","children":null,"spread":false},{"title":"ssd_classes.py <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"mjpeg.py <span style='color:#111;'> 3.05KB </span>","children":null,"spread":false},{"title":"ssd.py <span style='color:#111;'> 4.19KB </span>","children":null,"spread":false},{"title":"display.py <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false}],"spread":false},{"title":"googlenet","children":[{"title":"README.md <span style='color:#111;'> 172B </span>","children":null,"spread":false},{"title":"synset_words.txt <span style='color:#111;'> 30.93KB </span>","children":null,"spread":false},{"title":"create_engine.cpp <span style='color:#111;'> 6.50KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 156B </span>","children":null,"spread":false},{"title":"deploy.prototxt <span style='color:#111;'> 35.02KB </span>","children":null,"spread":false},{"title":"deploy.caffemodel <span style='color:#111;'> 51.05MB </span>","children":null,"spread":false}],"spread":true},{"title":"trt_yolo.py <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false},{"title":"README_mAP.md <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false},{"title":"mtcnn","children":[{"title":"README.md <span style='color:#111;'> 572B </span>","children":null,"spread":false},{"title":"det1_relu.prototxt <span style='color:#111;'> 4.08KB </span>","children":null,"spread":false},{"title":"det2_relu.caffemodel <span style='color:#111;'> 394.85KB </span>","children":null,"spread":false},{"title":"det2_relu.prototxt <span style='color:#111;'> 4.93KB </span>","children":null,"spread":false},{"title":"det3_relu.prototxt <span style='color:#111;'> 6.03KB </span>","children":null,"spread":false},{"title":"det3_relu.caffemodel <span style='color:#111;'> 1.49MB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 158B </span>","children":null,"spread":false},{"title":"det1_relu.caffemodel <span style='color:#111;'> 28.08KB </span>","children":null,"spread":false},{"title":"create_engines.cpp <span style='color:#111;'> 7.56KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"trt_yolo_mjpeg.py <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"common","children":[{"title":"Makefile.config <span style='color:#111;'> 7.49KB </span>","children":null,"spread":false},{"title":"common.h <span style='color:#111;'> 10.59KB </span>","children":null,"spread":false}],"spread":true},{"title":"eval_ssd.py <span style='color:#111;'> 3.31KB </span>","children":null,"spread":false},{"title":"pytrt.pxd <span style='color:#111;'> 725B </span>","children":null,"spread":false},{"title":"README_x86.md <span style='color:#111;'> 5.45KB </span>","children":null,"spread":false},{"title":"yolo","children":[{"title":"build_int8_engines.sh <span style='color:#111;'> 887B </span>","children":null,"spread":false},{"title":"yolo_to_onnx.py <span style='color:#111;'> 39.03KB </span>","children":null,"spread":false},{"title":"calibrator.py <span style='color:#111;'> 5.94KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 43B </span>","children":null,"spread":false},{"title":"build_dla_engines.sh <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"download_yolo.sh <span style='color:#111;'> 5.19KB </span>","children":null,"spread":false},{"title":"plugins.py <span style='color:#111;'> 5.66KB </span>","children":null,"spread":false},{"title":"calib_cache","children":[{"title":"calib_yolov4-int8-608.bin <span style='color:#111;'> 15.68KB </span>","children":null,"spread":false},{"title":"calib_yolov3-tiny-int8-416.bin <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"calib_yolov3-spp-int8-608.bin <span style='color:#111;'> 7.61KB </span>","children":null,"spread":false},{"title":"calib_yolov3-int8-608.bin <span style='color:#111;'> 7.43KB </span>","children":null,"spread":false},{"title":"calib_yolov4-tiny-int8-416.bin <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false}],"spread":false},{"title":"onnx_to_tensorrt.py <span style='color:#111;'> 8.18KB </span>","children":null,"spread":false}],"spread":false},{"title":"trt_ssd.py <span style='color:#111;'> 2.94KB </span>","children":null,"spread":false},{"title":"trt_mtcnn.py <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"plugins","children":[{"title":"README.md <span style='color:#111;'> 263B </span>","children":null,"spread":false},{"title":"yolo_layer.cu <span style='color:#111;'> 15.83KB </span>","children":null,"spread":false},{"title":"gpu_cc.py <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"yolo_layer.h <span style='color:#111;'> 4.79KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false}],"spread":false},{"title":"setup.py <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"doc","children":[{"title":"golden_retriever.png <span style='color:#111;'> 820.36KB </span>","children":null,"spread":false},{"title":"avengers.png <span style='color:#111;'> 953.97KB </span>","children":null,"spread":false},{"title":"hands.png <span style='color:#111;'> 215.05KB </span>","children":null,"spread":false},{"title":"dog_trt_yolov4_416.jpg <span style='color:#111;'> 135.77KB </span>","children":null,"spread":false},{"title":"huskies.png <span style='color:#111;'> 386.70KB </span>","children":null,"spread":false}],"spread":false},{"title":"trt_ssd_async.py <span style='color:#111;'> 6.15KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 109B </span>","children":null,"spread":false},{"title":"pytrt.pyx <span style='color:#111;'> 5.42KB </span>","children":null,"spread":false},{"title":"ssd","children":[{"title":"build_engines.sh <span style='color:#111;'> 223B </span>","children":null,"spread":false},{"title":"graphsurgeon.patch-4.4 <span style='color:#111;'> 395B </span>","children":null,"spread":false},{"title":"libflattenconcat.so.6 <span style='color:#111;'> 72.98KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"install_pycuda.sh <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"ssd_mobilenet_v1_coco.pb <span style='color:#111;'> 27.76MB </span>","children":null,"spread":false},{"title":"build_engine.py <span style='color:#111;'> 10.73KB </span>","children":null,"spread":false},{"title":"ssd_mobilenet_v1_egohands.pb <span style='color:#111;'> 21.56MB </span>","children":null,"spread":false},{"title":"ssd_mobilenet_v2_egohands.pb <span style='color:#111;'> 15.00MB </span>","children":null,"spread":false},{"title":"install.sh <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"graphsurgeon.patch-4.2.2 <span style='color:#111;'> 452B </span>","children":null,"spread":false},{"title":"libflattenconcat.so.5 <span style='color:#111;'> 72.91KB </span>","children":null,"spread":false},{"title":"graphsurgeon.patch-4.2 <span style='color:#111;'> 455B </span>","children":null,"spread":false},{"title":"ssd_mobilenet_v2_coco.pb <span style='color:#111;'> 66.46MB </span>","children":null,"spread":false}],"spread":false},{"title":"trtNet.cpp <span style='color:#111;'> 12.93KB </span>","children":null,"spread":false},{"title":"eval_yolo.py <span style='color:#111;'> 4.09KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明