[{"title":"( 30 个子文件 5.66MB ) Pothole_Detection:使用Masked-RCNN的坑洞检测","children":[{"title":"Pothole_Detection-master","children":[{"title":"build_and_push.sh <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"License.md <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 3.51KB </span>","children":null,"spread":false},{"title":"lambda_handler.py <span style='color:#111;'> 3.06KB </span>","children":null,"spread":false},{"title":"pothole_base","children":[{"title":"predictor.py <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false},{"title":"nginx.conf <span style='color:#111;'> 687B </span>","children":null,"spread":false},{"title":"pothole","children":[{"title":"pothole.py <span style='color:#111;'> 13.40KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"mrcnn","children":[{"title":"visualize.py <span style='color:#111;'> 18.61KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 32.80KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 124.01KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 8.74KB </span>","children":null,"spread":false},{"title":"parallel_model.py <span style='color:#111;'> 6.86KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"train <span style='color:#111;'> 3.44KB </span>","children":null,"spread":false},{"title":"settings.ini <span style='color:#111;'> 87B </span>","children":null,"spread":false},{"title":"wsgi.py <span style='color:#111;'> 202B </span>","children":null,"spread":false},{"title":"serve <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"video_markup.py <span style='color:#111;'> 9.75KB </span>","children":null,"spread":false}],"spread":true},{"title":"local_test","children":[{"title":"ping.sh <span style='color:#111;'> 96B </span>","children":null,"spread":false},{"title":"input.json <span style='color:#111;'> 126B </span>","children":null,"spread":false},{"title":"predict.sh <span style='color:#111;'> 356B </span>","children":null,"spread":false},{"title":"serve_local.sh <span style='color:#111;'> 92B </span>","children":null,"spread":false},{"title":"test_dir","children":[{"title":"input","children":[{"title":"config","children":[{"title":"hyperparameters.json <span style='color:#111;'> 3B </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"training","children":[{"title":"iris.csv <span style='color:#111;'> 3.57KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true},{"title":"model","children":[{"title":"tfidf_vectorizer.pkl <span style='color:#111;'> 6.20MB </span>","children":null,"spread":false},{"title":"classifier.pkl <span style='color:#111;'> 827.81KB </span>","children":null,"spread":false},{"title":"sentiment_analysis_artifacts.tar.gz <span style='color:#111;'> 2.93MB </span>","children":null,"spread":false}],"spread":true},{"title":"output","children":[{"title":"success <span style='color:#111;'> 4B </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 4.64KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]