NRL-implement:一些网络表示方法的实现,包括DeepWalk,LINE,node2vec和GraphGAN(在TensorFlow中)

上传者: 42129970 | 上传时间: 2022-04-08 03:37:55 | 文件大小: 9.33MB | 文件类型: ZIP
NRL实施 重新实现四种网络表示学习(NRL)算法:DeepWalk,LINE,node2vec,GraphGAN。 环境 NumPy TensorFlow Gensim 网络X 数据 路径./data/中有两个数据集: :引文数据集。 :以下网络。 训练 首先,找到项目的根路径: cd NRL-implement 对于DeepWalk: python DeepWalk/main.py 对于LINE: python LINE/main.py 对于node2vec: python node2vec/main.py 这三个实现使用cora作为数据集,结果保存在./results/cora/中。 使用逻辑回归作为分类器,以评估这三种实现产生的嵌入质量。 python LRclassifier.py --method DeepWalk DeepWalk可以用LIN

文件下载

资源详情

[{"title":"( 36 个子文件 9.33MB ) NRL-implement:一些网络表示方法的实现,包括DeepWalk,LINE,node2vec和GraphGAN(在TensorFlow中)","children":[{"title":"NRL-implement-master","children":[{"title":"utils_cora.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"results","children":[{"title":"tencent","children":[{"title":"task2_Tencent.csv <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"cora","children":[{"title":"DeepWalk","children":[{"title":"result.csv <span style='color:#111;'> 3.84MB </span>","children":null,"spread":false}],"spread":true},{"title":"task2_Cora.csv <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"node2vec","children":[{"title":"result.csv <span style='color:#111;'> 3.84MB </span>","children":null,"spread":false}],"spread":true},{"title":"LINE","children":[{"title":"result.csv <span style='color:#111;'> 7.66MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"GraphGAN","children":[{"title":"config.py <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 10.41KB </span>","children":null,"spread":false},{"title":"utils_graphgan.py <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"generator.py <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"eval_link_prediction.py <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"discriminator.py <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false}],"spread":true},{"title":"data_utils_cora.py <span style='color:#111;'> 3.85KB </span>","children":null,"spread":false},{"title":"DeepWalk","children":[{"title":"main.py <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"graph.py <span style='color:#111;'> 3.03KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"tencent","children":[{"title":"train_edges.npy <span style='color:#111;'> 3.24MB </span>","children":null,"spread":false},{"title":"test_edges.npy <span style='color:#111;'> 390.74KB </span>","children":null,"spread":false},{"title":"val_edges.npy <span style='color:#111;'> 195.43KB </span>","children":null,"spread":false},{"title":"val_edges_false.npy <span style='color:#111;'> 390.73KB </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"test_edges_false.npy <span style='color:#111;'> 781.36KB </span>","children":null,"spread":false},{"title":"adj_train.npz <span style='color:#111;'> 991.05KB </span>","children":null,"spread":false}],"spread":true},{"title":"cora","children":[{"title":"cora.content <span style='color:#111;'> 7.46MB </span>","children":null,"spread":false},{"title":"cora.cites <span style='color:#111;'> 68.29KB </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"node2vec","children":[{"title":"main.py <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"graph.py <span style='color:#111;'> 3.29KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 52B </span>","children":null,"spread":false},{"title":"LINE","children":[{"title":"main.py <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"graph.py <span style='color:#111;'> 3.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"LRclassifier.py <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明