eICU-GNN-LSTM:该存储库包含用于通过图表示学习来预测患者结果的代码(https

上传者: 42128963 | 上传时间: 2022-10-04 21:50:43 | 文件大小: 165KB | 文件类型: ZIP
通过图表示学习预测患者结果 该存储库包含用于通过“图形表示​​学习”预测患者结果的代码。 您可以在以下网址观看W3PHIAI(AAAI研讨会)上的聚焦演讲视频: 引文 如果您在研究中使用此代码或模型,请引用以下内容: @misc{rocheteautong2021, title={Predicting Patient Outcomes with Graph Representation Learning}, author={Emma Rocheteau and Catherine Tong and Petar Veličković and Nicholas Lane and Pietro Liò}, year={2021}, eprint={2101.03940}, archivePrefix={arXiv}, p

文件下载

资源详情

[{"title":"( 82 个子文件 165KB ) eICU-GNN-LSTM:该存储库包含用于通过图表示学习来预测患者结果的代码(https","children":[{"title":"eICU-GNN-LSTM-master","children":[{"title":"paths.json <span style='color:#111;'> 162B </span>","children":null,"spread":false},{"title":"train_dynamic.py <span style='color:#111;'> 11.51KB </span>","children":null,"spread":false},{"title":"results","children":[{"title":"lstmgnn_gat_los.csv <span style='color:#111;'> 16.51KB </span>","children":null,"spread":false},{"title":"lstmgnn_mpnn_ihm.csv <span style='color:#111;'> 28.16KB </span>","children":null,"spread":false},{"title":"dyn_mpnn_ihm.csv <span style='color:#111;'> 17.74KB </span>","children":null,"spread":false},{"title":"lstmgnn_sage_los.csv <span style='color:#111;'> 15.19KB </span>","children":null,"spread":false},{"title":"lstmgnn_gat_ihm_no_diag.csv <span style='color:#111;'> 17.27KB </span>","children":null,"spread":false},{"title":"lstmgnn_sage_ihm_no_diag.csv <span style='color:#111;'> 18.70KB </span>","children":null,"spread":false},{"title":"dyn_gat_los.csv <span style='color:#111;'> 22.52KB </span>","children":null,"spread":false},{"title":"ns_gat_ihm.csv <span style='color:#111;'> 13.87KB </span>","children":null,"spread":false},{"title":"lstmgnn_gat_ihm.csv <span style='color:#111;'> 18.48KB </span>","children":null,"spread":false},{"title":"dyn_mpnn_los.csv <span style='color:#111;'> 14.10KB </span>","children":null,"spread":false},{"title":"dyn_gat_ihm.csv <span style='color:#111;'> 25.67KB </span>","children":null,"spread":false},{"title":"lstmgnn_mpnn_los.csv <span style='color:#111;'> 15.95KB </span>","children":null,"spread":false},{"title":"dyn_gcn_los.csv <span style='color:#111;'> 12.47KB </span>","children":null,"spread":false},{"title":"lstm_ihm_no_diag.csv <span style='color:#111;'> 14.22KB </span>","children":null,"spread":false},{"title":"ns_sage_los.csv <span style='color:#111;'> 7.71KB </span>","children":null,"spread":false},{"title":"lstmgnn_mpnn_los_no_diag.csv <span style='color:#111;'> 12.51KB </span>","children":null,"spread":false},{"title":"ns_gat_los.csv <span style='color:#111;'> 13.43KB </span>","children":null,"spread":false},{"title":"lstmgnn_gat_los_no_diag.csv <span style='color:#111;'> 14.21KB </span>","children":null,"spread":false},{"title":"lstm_ihm.csv <span style='color:#111;'> 14.25KB </span>","children":null,"spread":false},{"title":"lstmgnn_mpnn_ihm_no_diag.csv <span style='color:#111;'> 15.12KB </span>","children":null,"spread":false},{"title":"lstm_los.csv <span style='color:#111;'> 11.51KB </span>","children":null,"spread":false},{"title":"ns_sage_ihm.csv <span style='color:#111;'> 11.24KB </span>","children":null,"spread":false},{"title":"lstmgnn_sage_ihm.csv <span style='color:#111;'> 15.86KB </span>","children":null,"spread":false},{"title":"lstm_los_no_diag.csv <span style='color:#111;'> 11.53KB </span>","children":null,"spread":false},{"title":"lstmgnn_sage_los_no_diag.csv <span style='color:#111;'> 13.16KB </span>","children":null,"spread":false},{"title":"dyn_gcn_ihm.csv <span style='color:#111;'> 17.72KB </span>","children":null,"spread":false}],"spread":false},{"title":"train_ns_gnn.py <span style='color:#111;'> 11.07KB </span>","children":null,"spread":false},{"title":"src","children":[{"title":"models","children":[{"title":"lstm.py <span style='color:#111;'> 4.31KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"pyg_ns.py <span style='color:#111;'> 12.60KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"dgnn.py <span style='color:#111;'> 4.11KB </span>","children":null,"spread":false},{"title":"pyg_lstmgnn.py <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"pyg_whole.py <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils.py <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 5.93KB </span>","children":null,"spread":false},{"title":"dataloader","children":[{"title":"pyg_reader.py <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false},{"title":"ts_reader.py <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"convert.py <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.98KB </span>","children":null,"spread":false},{"title":"args.py <span style='color:#111;'> 14.12KB </span>","children":null,"spread":false},{"title":"significance_testing","children":[{"title":"load_and_inspect.py <span style='color:#111;'> 531B </span>","children":null,"spread":false},{"title":"print_latex.py <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false},{"title":"t-test.py <span style='color:#111;'> 881B </span>","children":null,"spread":false}],"spread":true},{"title":"hyperparameters","children":[{"title":"dynamic_lstmgnn_search.py <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"ns_gnn_search.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"best_parameters.py <span style='color:#111;'> 6.31KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"search.py <span style='color:#111;'> 5.76KB </span>","children":null,"spread":false},{"title":"lstm_search.py <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"lstmgnn_search.py <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"graph_construction","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"create_bert_graph.py <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 779B </span>","children":null,"spread":false},{"title":"bert.py <span style='color:#111;'> 3.91KB </span>","children":null,"spread":false},{"title":"checking","children":[{"title":"manual.py <span style='color:#111;'> 903B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"sanity.py <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false}],"spread":true},{"title":"get_diagnosis_strings.py <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"create_graph.py <span style='color:#111;'> 8.76KB </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 325B </span>","children":null,"spread":false},{"title":"train_ns_lstm.py <span style='color:#111;'> 13.59KB </span>","children":null,"spread":false},{"title":"train_ns_lstmgnn.py <span style='color:#111;'> 17.41KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.67KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"eICU_preprocessing","children":[{"title":"timeseries.sql <span style='color:#111;'> 9.57KB </span>","children":null,"spread":false},{"title":"run_all_preprocessing.py <span style='color:#111;'> 754B </span>","children":null,"spread":false},{"title":"flat_and_labels.py <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":"split_train_test.py <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"create_all_tables.sql <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"diagnoses.py <span style='color:#111;'> 8.84KB </span>","children":null,"spread":false},{"title":"timeseries.py <span style='color:#111;'> 9.69KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"flat_features.sql <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"labels.sql <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"diagnoses.sql <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明