Visual_Question_Answering.pytorch:视觉问答-源码

上传者: 42128676 | 上传时间: 2021-12-06 15:43:30 | 文件大小: 29KB | 文件类型: -
视觉问答 该实现遵循“图像字幕和视觉问题解答的自下而上和自上而下注意”( )和“视觉问题解答的提示和技巧:从中学到的知识”中描述的VQA系统2017年挑战”( )。 结果 模型 验证准确性 训练时间 实施模型(CNN扩展+ BCP) 64.2 40至50分钟(Titan Xp) 使用计算准确性。 实施细节 我们的实现遵循论文的总体结构,但有以下简化: 我们不使用额外数据。 每个图像我们仅使用固定数量的对象(K = 36)。 我们使用一个简单的单流分类器而不进行预训练。 我们使用简单的ReLU激活而不是封闭的tanh。 前两点大大减少了培训时间。 在单个Titan Xp上,我们的实现每个周期大约需要200秒,而本文中描述的实现每个周期需要1个小时。 第三点是因为我们认为原始文档中的两个流分类器和预训练过于复杂,因此没有必要。 对于非线性激活单元,我们尝试了门tanh,

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明