yolo4_tensorflow2:tensorflow2.0实现的yolo第4版-源码

上传者: 42128315 | 上传时间: 2021-07-22 09:58:23 | 文件大小: 5.67MB | 文件类型: ZIP
yolo4_tensorflow2 tensorflow2.0实现的yolo第4版 [目录] 概述 对于那些在GPU平台上运行的检测器,它们的主干网络可能为VGG,ResNet,ResNeXt或DenseNet。 而对于那些在CPU平台上运行的检测器,他们的检测器可能为SqueezeNet,MobileNet,ShufflfleNet。 最具特色的二阶段目标检测器R-CNN系列,包括快速R-CNN,更快的R-CNN,R-FCN [9],Libra R-CNN。目标检测器,例如RepPoints。至于一阶段目标检测器,尤其有意义的网络包括YOLO,SSD,RetinaNet。 一阶段的无锚目标检测器在不断发展,包括CenterNet,CornerNet,FCOS等。收集不同阶段的特征图,具有这种机制的网络,包括特征金字塔网络(FPN),路径聚合网络(PAN),BiFPN和NAS-FPN。

文件下载

资源详情

[{"title":"( 61 个子文件 5.67MB ) yolo4_tensorflow2:tensorflow2.0实现的yolo第4版-源码","children":[{"title":"yolo4_tensorflow2-master","children":[{"title":".gitignore <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"src","children":[{"title":"applicaton.py <span style='color:#111;'> 292B </span>","children":null,"spread":false},{"title":"yolo4","children":[{"title":"Net.py <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false},{"title":"Loss.py <span style='color:#111;'> 8.29KB </span>","children":null,"spread":false},{"title":"Mish.py <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 37.31KB </span>","children":null,"spread":false},{"title":"BaseModel.py <span style='color:#111;'> 4.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"train.py <span style='color:#111;'> 4.82KB </span>","children":null,"spread":false}],"spread":true},{"title":"requirement.txt <span style='color:#111;'> 868B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"README.assets","children":[{"title":"2.png <span style='color:#111;'> 47.84KB </span>","children":null,"spread":false},{"title":"20191203202554270.bmp <span style='color:#111;'> 914.46KB </span>","children":null,"spread":false},{"title":"20200424193904517.png <span style='color:#111;'> 456.40KB </span>","children":null,"spread":false},{"title":"20191204170126808.png <span style='color:#111;'> 76.32KB </span>","children":null,"spread":false},{"title":"20191204165753393.png <span style='color:#111;'> 9.11KB </span>","children":null,"spread":false},{"title":"20191204123340966.bmp <span style='color:#111;'> 3.52MB </span>","children":null,"spread":false},{"title":"watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM1NjA4Mjc3,size_16,color_FFFFFF,t_70-20200428231614763.png <span style='color:#111;'> 34.95KB </span>","children":null,"spread":false},{"title":"watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM1NjA4Mjc3,size_16,color_FFFFFF,t_70-20200428232109082.png <span style='color:#111;'> 63.42KB </span>","children":null,"spread":false},{"title":"2019120416522227.png <span style='color:#111;'> 7.83KB </span>","children":null,"spread":false},{"title":"watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzE0ODQ1MTE5,size_16,color_FFFFFF,t_70.png <span style='color:#111;'> 237.30KB </span>","children":null,"spread":false},{"title":"watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM1NjA4Mjc3,size_16,color_FFFFFF,t_70.png <span style='color:#111;'> 317.71KB </span>","children":null,"spread":false},{"title":"image-20200428224306068.png <span style='color:#111;'> 191.25KB </span>","children":null,"spread":false},{"title":"20191204164908739.png <span style='color:#111;'> 65.16KB </span>","children":null,"spread":false},{"title":"20200424163458299.png <span style='color:#111;'> 344.20KB </span>","children":null,"spread":false},{"title":"watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2ppY29uZzQ0,size_16,color_FFFFFF,t_70-20200428214327146.png <span style='color:#111;'> 36.79KB </span>","children":null,"spread":false},{"title":"watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2ppY29uZzQ0,size_16,color_FFFFFF,t_70.png <span style='color:#111;'> 108.55KB </span>","children":null,"spread":false},{"title":"1588044968587.png <span style='color:#111;'> 80.84KB </span>","children":null,"spread":false},{"title":"20191204165803764.png <span style='color:#111;'> 11.29KB </span>","children":null,"spread":false},{"title":"watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2ppY29uZzQ0,size_16,color_FFFFFF,t_70-20200428214757418.png <span style='color:#111;'> 34.92KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 18.67KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 259B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 286B </span>","children":null,"spread":false},{"title":"yolo4_tensorflow2.iml <span style='color:#111;'> 651B </span>","children":null,"spread":false}],"spread":true},{"title":"sources","children":[{"title":"yolo4.pdf <span style='color:#111;'> 3.76MB </span>","children":null,"spread":false},{"title":"dataSet","children":[{"title":"train_anchor","children":[{"title":"anchors.txt <span style='color:#111;'> 16B </span>","children":null,"spread":false}],"spread":true},{"title":"genTrainFile.py <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"spliteDataSet.py <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"JPEGImages","children":[{"title":"000001.jpg <span style='color:#111;'> 15.47KB </span>","children":null,"spread":false},{"title":"000002.jpg <span style='color:#111;'> 18.55KB </span>","children":null,"spread":false},{"title":"000003.jpg <span style='color:#111;'> 20.46KB </span>","children":null,"spread":false}],"spread":true},{"title":"train_eval_test","children":[{"title":"test.txt <span style='color:#111;'> 7B </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 14B </span>","children":null,"spread":false},{"title":"eval.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"traineval.txt <span style='color:#111;'> 14B </span>","children":null,"spread":false}],"spread":false},{"title":"Annotations","children":[{"title":"classes.txt <span style='color:#111;'> 4B </span>","children":null,"spread":false},{"title":"yolo","children":[{"title":"000003.txt <span style='color:#111;'> 38B </span>","children":null,"spread":false},{"title":"000002.txt <span style='color:#111;'> 38B </span>","children":null,"spread":false},{"title":"000001.txt <span style='color:#111;'> 38B </span>","children":null,"spread":false}],"spread":false},{"title":"xml","children":[{"title":"000002.xml <span style='color:#111;'> 555B </span>","children":null,"spread":false},{"title":"000003.xml <span style='color:#111;'> 556B </span>","children":null,"spread":false},{"title":"000001.xml <span style='color:#111;'> 555B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"config.py <span style='color:#111;'> 585B </span>","children":null,"spread":false},{"title":"kMeansAnchor.py <span style='color:#111;'> 3.81KB </span>","children":null,"spread":false},{"title":"train_file","children":[{"title":"test.txt <span style='color:#111;'> 90B </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 181B </span>","children":null,"spread":false},{"title":"eval.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"traineval.txt <span style='color:#111;'> 181B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"yolov4.cfg <span style='color:#111;'> 11.92KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明