GAN-pytorch:pytorch中几种GAN算法的实现-源码

上传者: 42127835 | 上传时间: 2021-09-16 20:53:20 | 文件大小: 40.43MB | 文件类型: ZIP
素食主义者 一个库,可以轻松地在PyTorch中训练各种现有的GAN(生成对抗网络)。 该库主要针对GAN用户,他们希望将现有的GAN培训技术与自己的生成器/区分器一起使用。 但是,研究人员可能还会发现GAN基类对于更快地实施新的GAN训练技术很有用。 重点是简单性并提供合理的默认值。 如何安装 您需要python 3.5或更高版本。 然后: pip install vegans 如何使用 基本思想是用户提供区分器和生成器网络,而库则负责在选定的GAN设置中训练它们: from vegans.models.GAN import WassersteinGAN from vegans.utils import plot_losses, plot_images generator = ### Your generator (torch.nn.Module) adversariat = ##

文件下载

资源详情

[{"title":"( 28 个子文件 40.43MB ) GAN-pytorch:pytorch中几种GAN算法的实现-源码","children":[{"title":"GAN-pytorch-main","children":[{"title":"requirements","children":[{"title":"requirements.txt <span style='color:#111;'> 2.29KB </span>","children":null,"spread":false}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"plot2DModel.py <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 4.55KB </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 710B </span>","children":null,"spread":false},{"title":"networks.py <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"GAN.py <span style='color:#111;'> 431B </span>","children":null,"spread":false},{"title":"conditional","children":[{"title":"ConditionalDualGAN.py <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"ConditionalWassersteinGAN.py <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"ConditionalWassersteinGANGP.py <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"ConditionalVanillaGAN.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"ConditionalGenerativeModel.py <span style='color:#111;'> 8.54KB </span>","children":null,"spread":false}],"spread":true},{"title":"unconditional","children":[{"title":"GenerativeModel.py <span style='color:#111;'> 19.69KB </span>","children":null,"spread":false},{"title":"VanillaGAN.py <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"WassersteinGAN.py <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"DualGAN.py <span style='color:#111;'> 3.92KB </span>","children":null,"spread":false},{"title":"WassersteinGANGP.py <span style='color:#111;'> 3.08KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"examples","children":[{"title":"example_conditional.py <span style='color:#111;'> 3.71KB </span>","children":null,"spread":false},{"title":"example_unconditional.py <span style='color:#111;'> 3.07KB </span>","children":null,"spread":false},{"title":"example_image_to_image.py <span style='color:#111;'> 5.29KB </span>","children":null,"spread":false},{"title":"example_input_formats.py <span style='color:#111;'> 7.44KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 6.61KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"mnist","children":[{"title":"test_images.pickle <span style='color:#111;'> 7.49MB </span>","children":null,"spread":false},{"title":"train_images.pickle <span style='color:#111;'> 44.92MB </span>","children":null,"spread":false}],"spread":true},{"title":"fashion_mnist","children":[{"title":"test_images.pickle <span style='color:#111;'> 7.49MB </span>","children":null,"spread":false},{"title":"train_images.pickle <span style='color:#111;'> 44.92MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":".gitignore <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明