[{"title":"( 28 个子文件 40.43MB ) GAN-pytorch:pytorch中几种GAN算法的实现-源码","children":[{"title":"GAN-pytorch-main","children":[{"title":"requirements","children":[{"title":"requirements.txt <span style='color:#111;'> 2.29KB </span>","children":null,"spread":false}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"plot2DModel.py <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 4.55KB </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 710B </span>","children":null,"spread":false},{"title":"networks.py <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"GAN.py <span style='color:#111;'> 431B </span>","children":null,"spread":false},{"title":"conditional","children":[{"title":"ConditionalDualGAN.py <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"ConditionalWassersteinGAN.py <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"ConditionalWassersteinGANGP.py <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"ConditionalVanillaGAN.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"ConditionalGenerativeModel.py <span style='color:#111;'> 8.54KB </span>","children":null,"spread":false}],"spread":true},{"title":"unconditional","children":[{"title":"GenerativeModel.py <span style='color:#111;'> 19.69KB </span>","children":null,"spread":false},{"title":"VanillaGAN.py <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"WassersteinGAN.py <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"DualGAN.py <span style='color:#111;'> 3.92KB </span>","children":null,"spread":false},{"title":"WassersteinGANGP.py <span style='color:#111;'> 3.08KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"examples","children":[{"title":"example_conditional.py <span style='color:#111;'> 3.71KB </span>","children":null,"spread":false},{"title":"example_unconditional.py <span style='color:#111;'> 3.07KB </span>","children":null,"spread":false},{"title":"example_image_to_image.py <span style='color:#111;'> 5.29KB </span>","children":null,"spread":false},{"title":"example_input_formats.py <span style='color:#111;'> 7.44KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 6.61KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"mnist","children":[{"title":"test_images.pickle <span style='color:#111;'> 7.49MB </span>","children":null,"spread":false},{"title":"train_images.pickle <span style='color:#111;'> 44.92MB </span>","children":null,"spread":false}],"spread":true},{"title":"fashion_mnist","children":[{"title":"test_images.pickle <span style='color:#111;'> 7.49MB </span>","children":null,"spread":false},{"title":"train_images.pickle <span style='color:#111;'> 44.92MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":".gitignore <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]