automatic-ecg-diagnosis:用于训练和测试神经网络以进行ECG自动分类的脚本和模块。 论文“使用深度神经网络自动诊断12导联心电图”的配套代码

上传者: 42125867 | 上传时间: 2022-04-25 19:11:33 | 文件大小: 1.32MB | 文件类型: ZIP
使用深度神经网络自动进行ECG诊断 用于训练和测试用于ECG自动分类的深度神经网络的脚本和模块。 论文“使用深度神经网络自动诊断12导联心电图”的同伴代码。 。 引文: Ribeiro, A.H., Ribeiro, M.H., Paixão, G.M.M. et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat Commun 11, 1760 (2020). https://doi.org/10.1038/s41467-020-15432-4 Bibtex: @article{ribeiro_automatic_2020, title = {Automatic Diagnosis of the 12-Lead {{ECG}} Using a Deep Neural Netwo

文件下载

资源详情

[{"title":"( 59 个子文件 1.32MB ) automatic-ecg-diagnosis:用于训练和测试神经网络以进行ECG自动分类的脚本和模块。 论文“使用深度神经网络自动诊断12导联心电图”的配套代码","children":[{"title":"automatic-ecg-diagnosis-master","children":[{"title":".gitignore <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.54KB </span>","children":null,"spread":false},{"title":"outputs","children":[{"title":"tables","children":[{"title":"confusion matrices.xlsx <span style='color:#111;'> 5.38KB </span>","children":null,"spread":false},{"title":"confusion matrices.csv <span style='color:#111;'> 622B </span>","children":null,"spread":false},{"title":"mcnemar.csv <span style='color:#111;'> 335B </span>","children":null,"spread":false},{"title":"scores.xlsx <span style='color:#111;'> 5.31KB </span>","children":null,"spread":false},{"title":"kappas_annotators_and_DNN.xlsx <span style='color:#111;'> 4.77KB </span>","children":null,"spread":false},{"title":"kappas_annotators_and_DNN.csv <span style='color:#111;'> 223B </span>","children":null,"spread":false},{"title":"kappa.xlsx <span style='color:#111;'> 4.89KB </span>","children":null,"spread":false},{"title":"scores.csv <span style='color:#111;'> 855B </span>","children":null,"spread":false},{"title":"kappa.csv <span style='color:#111;'> 335B </span>","children":null,"spread":false},{"title":"mcnemar.xlsx <span style='color:#111;'> 4.90KB </span>","children":null,"spread":false}],"spread":true},{"title":"figures","children":[{"title":"precision_recall_AF.pdf <span style='color:#111;'> 16.69KB </span>","children":null,"spread":false},{"title":"boxplot_F1 score_other_splits.pdf <span style='color:#111;'> 24.69KB </span>","children":null,"spread":false},{"title":"boxplot_bootstrap_other_splits_F1 score.pdf <span style='color:#111;'> 24.69KB </span>","children":null,"spread":false},{"title":"precision_recall_RBBB.pdf <span style='color:#111;'> 13.01KB </span>","children":null,"spread":false},{"title":"precision_recall_LBBB.pdf <span style='color:#111;'> 12.65KB </span>","children":null,"spread":false},{"title":"boxplot_bootstrap_other_splits_data.txt <span style='color:#111;'> 1017.25KB </span>","children":null,"spread":false},{"title":"precision_recall_1dAVb.pdf <span style='color:#111;'> 19.34KB </span>","children":null,"spread":false},{"title":"boxplot_bootstrap_Specificity.pdf <span style='color:#111;'> 17.57KB </span>","children":null,"spread":false},{"title":"boxplot_bootstrap_data.txt <span style='color:#111;'> 3.55MB </span>","children":null,"spread":false},{"title":"precision_recall_ST.pdf <span style='color:#111;'> 17.12KB </span>","children":null,"spread":false},{"title":"boxplot_data.txt <span style='color:#111;'> 3.55MB </span>","children":null,"spread":false},{"title":"precision_recall_SB.pdf <span style='color:#111;'> 17.82KB </span>","children":null,"spread":false},{"title":"boxplot__ther_splits <span style='color:#111;'> 1017.25KB </span>","children":null,"spread":false},{"title":"boxplot_bootstrap_F1 score.pdf <span style='color:#111;'> 24.54KB </span>","children":null,"spread":false},{"title":"boxplot_bootstrap_Recall.pdf <span style='color:#111;'> 17.34KB </span>","children":null,"spread":false},{"title":"boxplot_bootstrap_Precision.pdf <span style='color:#111;'> 18.78KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"datasets.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"dnn_predicts","children":[{"title":"README.md <span style='color:#111;'> 1.93KB </span>","children":null,"spread":false},{"title":"model.npy <span style='color:#111;'> 19.51KB </span>","children":null,"spread":false},{"title":"other_seeds","children":[{"title":"model_8.npy <span style='color:#111;'> 19.51KB </span>","children":null,"spread":false},{"title":"model_1.npy <span style='color:#111;'> 19.51KB </span>","children":null,"spread":false},{"title":"model_4.npy <span style='color:#111;'> 19.51KB </span>","children":null,"spread":false},{"title":"model_2.npy <span style='color:#111;'> 19.51KB </span>","children":null,"spread":false},{"title":"model_10.npy <span style='color:#111;'> 19.51KB </span>","children":null,"spread":false},{"title":"model_9.npy <span style='color:#111;'> 19.51KB </span>","children":null,"spread":false},{"title":"model_6.npy <span style='color:#111;'> 19.51KB </span>","children":null,"spread":false},{"title":"model_7.npy <span style='color:#111;'> 19.51KB </span>","children":null,"spread":false},{"title":"model_3.npy <span style='color:#111;'> 19.51KB </span>","children":null,"spread":false},{"title":"model_5.npy <span style='color:#111;'> 19.51KB </span>","children":null,"spread":false}],"spread":true},{"title":"other_splits","children":[{"title":"model_individual_patients.npy <span style='color:#111;'> 19.51KB </span>","children":null,"spread":false},{"title":"model_normal_order.npy <span style='color:#111;'> 19.51KB </span>","children":null,"spread":false},{"title":"model_date_order.npy <span style='color:#111;'> 19.51KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"generate_figures_and_tables.py <span style='color:#111;'> 20.23KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 6.07KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 150B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"README.md <span style='color:#111;'> 4.29KB </span>","children":null,"spread":false},{"title":"annotations","children":[{"title":"cardiologist2.csv <span style='color:#111;'> 9.72KB </span>","children":null,"spread":false},{"title":"cardiologist1.csv <span style='color:#111;'> 9.72KB </span>","children":null,"spread":false},{"title":"gold_standard.csv <span style='color:#111;'> 9.72KB </span>","children":null,"spread":false},{"title":"emergency_residents.csv <span style='color:#111;'> 9.72KB </span>","children":null,"spread":false},{"title":"dnn.csv <span style='color:#111;'> 12.84KB </span>","children":null,"spread":false},{"title":"cardiology_residents.csv <span style='color:#111;'> 9.72KB </span>","children":null,"spread":false},{"title":"medical_students.csv <span style='color:#111;'> 9.72KB </span>","children":null,"spread":false}],"spread":false},{"title":"attributes.csv <span style='color:#111;'> 4.05KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明