rnn笔记本:RNN(SimpleRNN,LSTM,GRU)Tensorflow2.0和Keras笔记本(车间材料)-源码

上传者: 42123237 | 上传时间: 2021-09-23 15:23:34 | 文件大小: 6.86MB | 文件类型: ZIP
rnn笔记本 RNN(SimpleRNN,LSTM,GRU)Tensorflow2.0和Keras笔记本(车间材料) 滑梯 视频 某些部分是可以自由地从我们的也可以购买一个完整的软件包,包括从波斯32个视频 笔记本电脑 RNN简介: 我们如何推断不同的序列长度? 加密货币预测 当我们使用return_sequences = True吗? 堆叠式RNN(深度RNN) 使用LSTM层 CNN + LSTM用于球运动分类 Keras中的TimeDistributed层是什么? 视频分类介绍 CNN + LSTM 通过预训练的CNN和LSTM进行动作识别 如何使用预训练的CNN作

文件下载

资源详情

[{"title":"( 32 个子文件 6.86MB ) rnn笔记本:RNN(SimpleRNN,LSTM,GRU)Tensorflow2.0和Keras笔记本(车间材料)-源码","children":[{"title":"rnn-notebooks-master","children":[{"title":"07_text-classification-Emojify.ipynb <span style='color:#111;'> 47.70KB </span>","children":null,"spread":false},{"title":"03_1_Cryptocurrency-predicting.ipynb <span style='color:#111;'> 21.32KB </span>","children":null,"spread":false},{"title":"01_simple-RNN.ipynb <span style='color:#111;'> 86.62KB </span>","children":null,"spread":false},{"title":"06_analogy-using-embeddings.ipynb <span style='color:#111;'> 10.93KB </span>","children":null,"spread":false},{"title":"Slides","children":[{"title":"RNN.pdf <span style='color:#111;'> 5.51MB </span>","children":null,"spread":false}],"spread":true},{"title":"02_1_simple-RNN-diffrent-sequence-length.ipynb <span style='color:#111;'> 40.91KB </span>","children":null,"spread":false},{"title":"images","children":[{"title":"emojifier-v2.png <span style='color:#111;'> 151.43KB </span>","children":null,"spread":false},{"title":"attn_mechanism.png <span style='color:#111;'> 168.36KB </span>","children":null,"spread":false},{"title":"attn_model.png <span style='color:#111;'> 271.09KB </span>","children":null,"spread":false},{"title":"data_set.png <span style='color:#111;'> 201.19KB </span>","children":null,"spread":false},{"title":"table.png <span style='color:#111;'> 86.94KB </span>","children":null,"spread":false},{"title":"image_1.png <span style='color:#111;'> 239.69KB </span>","children":null,"spread":false},{"title":"date_attention.png <span style='color:#111;'> 131.10KB </span>","children":null,"spread":false},{"title":"embedding1.png <span style='color:#111;'> 326.93KB </span>","children":null,"spread":false},{"title":"date_attention2.png <span style='color:#111;'> 129.72KB </span>","children":null,"spread":false},{"title":"cosine_sim.png <span style='color:#111;'> 103.64KB </span>","children":null,"spread":false},{"title":"poorly_trained_model.png <span style='color:#111;'> 10.07KB </span>","children":null,"spread":false}],"spread":false},{"title":"09_add-numbers-with-seq2seq.ipynb <span style='color:#111;'> 16.49KB </span>","children":null,"spread":false},{"title":"02_2_simple-RNN-diffrent-sequence-length.ipynb <span style='color:#111;'> 55.03KB </span>","children":null,"spread":false},{"title":"TimeDistributed.ipynb <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false},{"title":"nmt_utils.py <span style='color:#111;'> 7.41KB </span>","children":null,"spread":false},{"title":"10_Neural-machine-translation-with-attention-for-date-convert.ipynb <span style='color:#111;'> 59.22KB </span>","children":null,"spread":false},{"title":"05-1-video-action-recognition-train-extract-features-with-cnn.ipynb <span style='color:#111;'> 9.25KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.16KB </span>","children":null,"spread":false},{"title":"11_nmt-with-attention.ipynb <span style='color:#111;'> 90.55KB </span>","children":null,"spread":false},{"title":"final_cnn_lstm.ipynb <span style='color:#111;'> 66.03KB </span>","children":null,"spread":false},{"title":"logo.png <span style='color:#111;'> 35.39KB </span>","children":null,"spread":false},{"title":"05-2_video-action-recognition-train-rnn.ipynb <span style='color:#111;'> 56.19KB </span>","children":null,"spread":false},{"title":"08_shahnameh-text-generation-language-model.ipynb <span style='color:#111;'> 37.59KB </span>","children":null,"spread":false},{"title":"04_simple-CNN-LSTM.ipynb <span style='color:#111;'> 128.52KB </span>","children":null,"spread":false},{"title":"12_image-captioning-with-attention.ipynb <span style='color:#111;'> 1.61MB </span>","children":null,"spread":false},{"title":"03_2_Cryptocurrency-predicting.ipynb <span style='color:#111;'> 20.45KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明