[{"title":"( 32 个子文件 6.86MB ) rnn笔记本:RNN(SimpleRNN,LSTM,GRU)Tensorflow2.0和Keras笔记本(车间材料)-源码","children":[{"title":"rnn-notebooks-master","children":[{"title":"07_text-classification-Emojify.ipynb <span style='color:#111;'> 47.70KB </span>","children":null,"spread":false},{"title":"03_1_Cryptocurrency-predicting.ipynb <span style='color:#111;'> 21.32KB </span>","children":null,"spread":false},{"title":"01_simple-RNN.ipynb <span style='color:#111;'> 86.62KB </span>","children":null,"spread":false},{"title":"06_analogy-using-embeddings.ipynb <span style='color:#111;'> 10.93KB </span>","children":null,"spread":false},{"title":"Slides","children":[{"title":"RNN.pdf <span style='color:#111;'> 5.51MB </span>","children":null,"spread":false}],"spread":true},{"title":"02_1_simple-RNN-diffrent-sequence-length.ipynb <span style='color:#111;'> 40.91KB </span>","children":null,"spread":false},{"title":"images","children":[{"title":"emojifier-v2.png <span style='color:#111;'> 151.43KB </span>","children":null,"spread":false},{"title":"attn_mechanism.png <span style='color:#111;'> 168.36KB </span>","children":null,"spread":false},{"title":"attn_model.png <span style='color:#111;'> 271.09KB </span>","children":null,"spread":false},{"title":"data_set.png <span style='color:#111;'> 201.19KB </span>","children":null,"spread":false},{"title":"table.png <span style='color:#111;'> 86.94KB </span>","children":null,"spread":false},{"title":"image_1.png <span style='color:#111;'> 239.69KB </span>","children":null,"spread":false},{"title":"date_attention.png <span style='color:#111;'> 131.10KB </span>","children":null,"spread":false},{"title":"embedding1.png <span style='color:#111;'> 326.93KB </span>","children":null,"spread":false},{"title":"date_attention2.png <span style='color:#111;'> 129.72KB </span>","children":null,"spread":false},{"title":"cosine_sim.png <span style='color:#111;'> 103.64KB </span>","children":null,"spread":false},{"title":"poorly_trained_model.png <span style='color:#111;'> 10.07KB </span>","children":null,"spread":false}],"spread":false},{"title":"09_add-numbers-with-seq2seq.ipynb <span style='color:#111;'> 16.49KB </span>","children":null,"spread":false},{"title":"02_2_simple-RNN-diffrent-sequence-length.ipynb <span style='color:#111;'> 55.03KB </span>","children":null,"spread":false},{"title":"TimeDistributed.ipynb <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false},{"title":"nmt_utils.py <span style='color:#111;'> 7.41KB </span>","children":null,"spread":false},{"title":"10_Neural-machine-translation-with-attention-for-date-convert.ipynb <span style='color:#111;'> 59.22KB </span>","children":null,"spread":false},{"title":"05-1-video-action-recognition-train-extract-features-with-cnn.ipynb <span style='color:#111;'> 9.25KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.16KB </span>","children":null,"spread":false},{"title":"11_nmt-with-attention.ipynb <span style='color:#111;'> 90.55KB </span>","children":null,"spread":false},{"title":"final_cnn_lstm.ipynb <span style='color:#111;'> 66.03KB </span>","children":null,"spread":false},{"title":"logo.png <span style='color:#111;'> 35.39KB </span>","children":null,"spread":false},{"title":"05-2_video-action-recognition-train-rnn.ipynb <span style='color:#111;'> 56.19KB </span>","children":null,"spread":false},{"title":"08_shahnameh-text-generation-language-model.ipynb <span style='color:#111;'> 37.59KB </span>","children":null,"spread":false},{"title":"04_simple-CNN-LSTM.ipynb <span style='color:#111;'> 128.52KB </span>","children":null,"spread":false},{"title":"12_image-captioning-with-attention.ipynb <span style='color:#111;'> 1.61MB </span>","children":null,"spread":false},{"title":"03_2_Cryptocurrency-predicting.ipynb <span style='color:#111;'> 20.45KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]