pytorch-ts:基于GluonTS后端的基于PyTorch的概率时间序列预测框架-源码

上传者: 42122988 | 上传时间: 2021-09-23 15:43:13 | 文件大小: 725KB | 文件类型: ZIP
火炬 PyTorchTS是一个概率时间序列预测框架,通过利用作为其后端API以及用于加载,转换和回测时间序列数据集,提供了最新的PyTorch时间序列模型。 安装 $ pip3 install pytorchts 快速开始 在这里,我们通过GluonTS自述文件重点介绍了API的更改。 import matplotlib . pyplot as plt import pandas as pd import torch from gluonts . dataset . common import ListDataset from gluonts . dataset . util import to_pandas from pts . model . deepar import DeepAREstimator from pts import Trainer 这个简单的示例说明了如何在一些数

文件下载

资源详情

[{"title":"( 91 个子文件 725KB ) pytorch-ts:基于GluonTS后端的基于PyTorch的概率时间序列预测框架-源码","children":[{"title":"pytorch-ts-master","children":[{"title":"setup.py <span style='color:#111;'> 903B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"MAINTAINERS <span style='color:#111;'> 39B </span>","children":null,"spread":false},{"title":"pts","children":[{"title":"trainer.py <span style='color:#111;'> 3.06KB </span>","children":null,"spread":false},{"title":"distributions","children":[{"title":"__init__.py <span style='color:#111;'> 306B </span>","children":null,"spread":false},{"title":"piecewise_linear.py <span style='color:#111;'> 4.77KB </span>","children":null,"spread":false},{"title":"implicit_quantile.py <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"zero_inflated.py <span style='color:#111;'> 4.68KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":"causal_deepar","children":[{"title":"causal_deepar_estimator.py <span style='color:#111;'> 9.99KB </span>","children":null,"spread":false},{"title":"causal_deepar_network.py <span style='color:#111;'> 20.89KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 143B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 108B </span>","children":null,"spread":false},{"title":"simple_feedforward","children":[{"title":"__init__.py <span style='color:#111;'> 191B </span>","children":null,"spread":false},{"title":"simple_feedforward_network.py <span style='color:#111;'> 4.07KB </span>","children":null,"spread":false},{"title":"simple_feedforward_estimator.py <span style='color:#111;'> 7.12KB </span>","children":null,"spread":false}],"spread":true},{"title":"time_grad","children":[{"title":"__init__.py <span style='color:#111;'> 173B </span>","children":null,"spread":false},{"title":"epsilon_theta.py <span style='color:#111;'> 4.52KB </span>","children":null,"spread":false},{"title":"time_grad_network.py <span style='color:#111;'> 20.86KB </span>","children":null,"spread":false},{"title":"time_grad_estimator.py <span style='color:#111;'> 9.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"estimator.py <span style='color:#111;'> 5.61KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"lstnet","children":[{"title":"lstnet_estimator.py <span style='color:#111;'> 5.78KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 46B </span>","children":null,"spread":false},{"title":"lstnet_network.py <span style='color:#111;'> 6.09KB </span>","children":null,"spread":false}],"spread":false},{"title":"deepvar","children":[{"title":"__init__.py <span style='color:#111;'> 48B </span>","children":null,"spread":false},{"title":"deepvar_estimator.py <span style='color:#111;'> 10.89KB </span>","children":null,"spread":false},{"title":"deepvar_network.py <span style='color:#111;'> 20.52KB </span>","children":null,"spread":false}],"spread":false},{"title":"deepar","children":[{"title":"__init__.py <span style='color:#111;'> 111B </span>","children":null,"spread":false},{"title":"deepar_estimator.py <span style='color:#111;'> 9.43KB </span>","children":null,"spread":false},{"title":"deepar_network.py <span style='color:#111;'> 16.62KB </span>","children":null,"spread":false}],"spread":false},{"title":"n_beats","children":[{"title":"n_beats_ensemble.py <span style='color:#111;'> 10.75KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 101B </span>","children":null,"spread":false},{"title":"n_beats_estimator.py <span style='color:#111;'> 8.14KB </span>","children":null,"spread":false},{"title":"n_beats_network.py <span style='color:#111;'> 11.35KB </span>","children":null,"spread":false}],"spread":false},{"title":"transformer_tempflow","children":[{"title":"transformer_tempflow_estimator.py <span style='color:#111;'> 9.29KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 73B </span>","children":null,"spread":false},{"title":"transformer_tempflow_network.py <span style='color:#111;'> 20.81KB </span>","children":null,"spread":false}],"spread":false},{"title":"tempflow","children":[{"title":"tempflow_estimator.py <span style='color:#111;'> 8.65KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 131B </span>","children":null,"spread":false},{"title":"tempflow_network.py <span style='color:#111;'> 20.56KB </span>","children":null,"spread":false}],"spread":false},{"title":"tft","children":[{"title":"__init__.py <span style='color:#111;'> 185B </span>","children":null,"spread":false},{"title":"tft_output.py <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"tft_transform.py <span style='color:#111;'> 5.00KB </span>","children":null,"spread":false},{"title":"tft_estimator.py <span style='color:#111;'> 13.40KB </span>","children":null,"spread":false},{"title":"tft_network.py <span style='color:#111;'> 11.08KB </span>","children":null,"spread":false},{"title":"tft_modules.py <span style='color:#111;'> 8.74KB </span>","children":null,"spread":false}],"spread":false},{"title":"transformer","children":[{"title":"__init__.py <span style='color:#111;'> 56B </span>","children":null,"spread":false},{"title":"transformer_estimator.py <span style='color:#111;'> 9.41KB </span>","children":null,"spread":false},{"title":"transformer_network.py <span style='color:#111;'> 15.85KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"dataset","children":[{"title":"repository","children":[{"title":"__init__.py <span style='color:#111;'> 38B </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 244B </span>","children":null,"spread":false},{"title":"_m5.py <span style='color:#111;'> 8.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"loader.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 47B </span>","children":null,"spread":false}],"spread":true},{"title":"feature","children":[{"title":"lags.py <span style='color:#111;'> 786B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 215B </span>","children":null,"spread":false},{"title":"holiday.py <span style='color:#111;'> 6.13KB </span>","children":null,"spread":false},{"title":"fourier_date_feature.py <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 310B </span>","children":null,"spread":false},{"title":"modules","children":[{"title":"gaussian_diffusion.py <span style='color:#111;'> 9.27KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 628B </span>","children":null,"spread":false},{"title":"feature.py <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"distribution_output.py <span style='color:#111;'> 16.42KB </span>","children":null,"spread":false},{"title":"scaler.py <span style='color:#111;'> 3.95KB </span>","children":null,"spread":false},{"title":"iqn_modules.py <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"flows.py <span style='color:#111;'> 13.57KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":".github","children":[{"title":"workflows","children":[{"title":"publish-to-pypi.yml <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"examples","children":[{"title":"images","children":[{"title":"readme_1.png <span style='color:#111;'> 19.15KB </span>","children":null,"spread":false},{"title":"readme_0.png <span style='color:#111;'> 24.56KB </span>","children":null,"spread":false}],"spread":true},{"title":"m5-tft.ipynb <span style='color:#111;'> 279.96KB </span>","children":null,"spread":false},{"title":"Time-Grad-Electricity.ipynb <span style='color:#111;'> 510.18KB </span>","children":null,"spread":false},{"title":"Multivariate-Flow-Solar.ipynb <span style='color:#111;'> 57.39KB </span>","children":null,"spread":false},{"title":"Implicit-Quantile-Network-Example.ipynb <span style='color:#111;'> 16.86KB </span>","children":null,"spread":false},{"title":"m5.ipynb <span style='color:#111;'> 60.17KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 5.81KB </span>","children":null,"spread":false},{"title":"LICENSE.gluon-ts <span style='color:#111;'> 9.90KB </span>","children":null,"spread":false},{"title":"test","children":[{"title":"distributions","children":[{"title":"test_zero_inflated.py <span style='color:#111;'> 3.09KB </span>","children":null,"spread":false},{"title":"test_piecewise_linear.py <span style='color:#111;'> 6.95KB </span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":"test_forecast.py <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"test_deepvar.py <span style='color:#111;'> 3.62KB </span>","children":null,"spread":false},{"title":"test_lstnet.py <span style='color:#111;'> 3.29KB </span>","children":null,"spread":false},{"title":"deepar","children":[{"title":"test_auxillary_outputs.py <span style='color:#111;'> 2.28KB </span>","children":null,"spread":false},{"title":"test_lags.py <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"feature","children":[{"title":"test_holiday.py <span style='color:#111;'> 7.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"modules","children":[{"title":"test_implicit_quantile_distr_output.py <span style='color:#111;'> 8.58KB </span>","children":null,"spread":false},{"title":"test_distribution_output.py <span style='color:#111;'> 9.26KB </span>","children":null,"spread":false},{"title":"test_scaler.py <span style='color:#111;'> 5.39KB </span>","children":null,"spread":false},{"title":"test_feature.py <span style='color:#111;'> 9.35KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明