INI流水线学习:将Isomap,LLE和扩散图算法应用于几个数据集,包括经典瑞士卷数据,虹膜数据集,MNIST,神经元尖峰数据和分子动力学模拟数据-源码

上传者: 42122986 | 上传时间: 2021-04-02 16:39:36 | 文件大小: 13.34MB | 文件类型: ZIP
EN.553.738高维近似,概率和统计学习最终项目 关查理,胡志明,张杰@约翰·霍普金斯大学 在这个项目中,我们探索三种不同的非线性降维/流形学习算法:Isomap,局部线性嵌入(LLE)和扩散图/ Laplacian特征图。 我们在数据集上对这些算法进行基准测试,例如经典的瑞士卷,虹膜,MNIST和神经元尖峰数据。 我们还将它们与主成分分析(PCA)进行比较,后者是一种线性降维算法。 最后,我们有一个使用扩散图的演示来分析氢二聚体的玩具分子动力学模拟的自由能态。 要运行任何基准测试/演示,请启动相应的脚本: python filename.py 。 您可以编辑每个脚本中每个算法中的超参数,例如投影维和相邻算法的数量。 先决条件 脚本要求: 数据集 Swiss Roll和Iris数据集是从sklearn.datasets包生成的。 我们下载了亚·莱卡的网页的数据库MNIST。 神经

文件下载

评论信息

  • qq_33227883 :
    用户下载后在一定时间内未进行评价,系统默认好评。
    2021-08-21

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明