opacus:使用不同的隐私训练PyTorch模型-源码

上传者: 42122878 | 上传时间: 2021-12-29 21:11:01 | 文件大小: 458KB | 文件类型: -
是一个库,可以使用不同的隐私训练PyTorch模型。 它支持在客户端上进行的代码更改最少的培训,对培训性能的影响很小,并允许客户端在线跟踪在任何给定时刻花费的隐私预算。 目标观众 此代码版本针对两个目标受众: ML从业者会发现这是培训差异性隐私模型的温和介绍,因为它需要最少的代码更改。 差异隐私科学家会发现这很容易尝试和修改,使他们能够专注于重要的事情。 安装 可以通过pip安装最新版本的Opacus: pip install opacus :warning_selector: 注意:这将带来最新版本的部门,它们在Cuda 10.2上。 如果您的环境使用的是较旧的Cuda版本(例如,Google Colab仍在Cuda 10.1上),则此方法将无效。 要在Colab上安装,请首先运行以下单元: pip install torchcsprng==0.1.3+cu101 -f https://download.pytorch.org/whl/torch_stable.html 然后,您可以像以前一样pip install opacus 。 在查看更多上下文。 您还可以直接从

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明