DeepFashion_Try_On:“通过自适应生成:left-right_arrow:保留图像内容实现逼真的虚拟试戴”的官方代码,CVPR'20 https-源码

上传者: 42121412 | 上传时间: 2021-07-02 15:00:59 | 文件大小: 4.99MB | 文件类型: ZIP
通过自适应生成实现逼真的虚拟试穿 :left-right_arrow: 保留图像内容,CVPR'20。 CVPR 2020论文“通过自适应生成实现逼真的虚拟试穿”的官方代码 :left-right_arrow: 保留图像内容”。 我们重新排列了VITON数据集以便于访问。 推理 python test.py 数据集分区我们提出了一个标准,介绍了对某些参考图像进行试戴的难度。 我们选择评估试穿难度的具体要点 我们使用姿势图来计算试穿的难度等级。 其背后的主要动机是服装区域中的遮挡和布局越复杂,难度就越大。 并给出了公式, 计算试穿参考图像难度的公式 其中t是某个关键点,Mp'是我们考虑的关键点集合,N是集合的大小。 细分标签 0 - > Background 1 - > Hair 4 - > Upclothes 5 - > Left-shoe 6 - > Right-shoe 7 - > Noise 8 - > Pants 9 - > Lef

文件下载

资源详情

[{"title":"( 67 个子文件 4.99MB ) DeepFashion_Try_On:“通过自适应生成:left-right_arrow:保留图像内容实现逼真的虚拟试戴”的官方代码,CVPR'20 https-源码","children":[{"title":"DeepFashion_Try_On-master","children":[{"title":"ACGPN_train","children":[{"title":"train.py <span style='color:#111;'> 9.16KB </span>","children":null,"spread":false},{"title":"models","children":[{"title":"mnist_model.py <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 117B </span>","children":null,"spread":false},{"title":"mnist_train.py <span style='color:#111;'> 3.85KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 12B </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 700B </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"pix2pixHD_model.py <span style='color:#111;'> 20.60KB </span>","children":null,"spread":false},{"title":"networks_backup.py <span style='color:#111;'> 63.67KB </span>","children":null,"spread":false},{"title":"networks.py <span style='color:#111;'> 64.79KB </span>","children":null,"spread":false}],"spread":true},{"title":"util","children":[{"title":"util.py <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 11B </span>","children":null,"spread":false},{"title":"image_pool.py <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"util.cpython-37.pyc <span style='color:#111;'> 3.66KB </span>","children":null,"spread":false},{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 175B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"tps_grid_gen.py <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false},{"title":"options","children":[{"title":"train_options.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 14B </span>","children":null,"spread":false},{"title":"base_options.py <span style='color:#111;'> 5.52KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"train_options.cpython-37.pyc <span style='color:#111;'> 2.46KB </span>","children":null,"spread":false},{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 178B </span>","children":null,"spread":false},{"title":"base_options.cpython-37.pyc <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false}],"spread":true},{"title":"test_options.py <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"sample","children":[{"title":"000154_0.jpg <span style='color:#111;'> 38.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"aligned_dataset.py <span style='color:#111;'> 8.14KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 11B </span>","children":null,"spread":false},{"title":"base_dataset.py <span style='color:#111;'> 3.09KB </span>","children":null,"spread":false},{"title":"custom_dataset_data_loader.py <span style='color:#111;'> 886B </span>","children":null,"spread":false},{"title":"data_loader.py <span style='color:#111;'> 229B </span>","children":null,"spread":false},{"title":"base_data_loader.py <span style='color:#111;'> 195B </span>","children":null,"spread":false},{"title":"image_folder.py <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false}],"spread":true},{"title":"grid_sample.py <span style='color:#111;'> 454B </span>","children":null,"spread":false}],"spread":true},{"title":"Data_preprocessing","children":[{"title":"readme.txt <span style='color:#111;'> 24B </span>","children":null,"spread":false}],"spread":true},{"title":"images","children":[{"title":"criterion.png <span style='color:#111;'> 244.08KB </span>","children":null,"spread":false},{"title":"formula.png <span style='color:#111;'> 57.79KB </span>","children":null,"spread":false},{"title":"tryon.png <span style='color:#111;'> 2.60MB </span>","children":null,"spread":false},{"title":"Partition_label.tar.gz <span style='color:#111;'> 6.41KB </span>","children":null,"spread":false},{"title":"hard.txt <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false},{"title":"difficulty.png <span style='color:#111;'> 1.97MB </span>","children":null,"spread":false},{"title":"medium.txt <span style='color:#111;'> 6.53KB </span>","children":null,"spread":false},{"title":"easy.txt <span style='color:#111;'> 13.90KB </span>","children":null,"spread":false}],"spread":true},{"title":".idea","children":[{"title":"DeepFashion_Try_On.iml <span style='color:#111;'> 453B </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 288B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 288B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 39B </span>","children":null,"spread":false},{"title":"vcs.xml <span style='color:#111;'> 180B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"ACGPN_inference","children":[{"title":"checkpoints","children":[{"title":"readme.txt <span style='color:#111;'> 17B </span>","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"models.py <span style='color:#111;'> 483B </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false},{"title":"pix2pixHD_model.py <span style='color:#111;'> 17.07KB </span>","children":null,"spread":false},{"title":"networks.py <span style='color:#111;'> 63.48KB </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 8.28KB </span>","children":null,"spread":false},{"title":"util","children":[{"title":"util.py <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"image_pool.py <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"tps_grid_gen.py <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false},{"title":"options","children":[{"title":"train_options.py <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false},{"title":"base_options.py <span style='color:#111;'> 5.29KB </span>","children":null,"spread":false},{"title":"test_options.py <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"aligned_dataset.py <span style='color:#111;'> 7.95KB </span>","children":null,"spread":false},{"title":"base_dataset.py <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"custom_dataset_data_loader.py <span style='color:#111;'> 886B </span>","children":null,"spread":false},{"title":"data_loader.py <span style='color:#111;'> 229B </span>","children":null,"spread":false},{"title":"base_data_loader.py <span style='color:#111;'> 195B </span>","children":null,"spread":false},{"title":"image_folder.py <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"grid_sample.py <span style='color:#111;'> 454B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明