邹博机器学习全套代码

上传者: 14903801 | 上传时间: 2019-12-21 20:31:26 | 文件大小: 102.63MB | 文件类型: rar
邹博小象学院机器学习课程全套代码。回归、svm、聚类等常规算法都有,很全面。

文件下载

资源详情

[{"title":"( 49 个子文件 102.63MB ) 邹博机器学习全套代码","children":[{"title":"代码","children":[{"title":"18.EM代码.zip <span style='color:#111;'> 13.86KB </span>","children":null,"spread":false},{"title":"12.XGBoost代码.zip <span style='color:#111;'> 137.58KB </span>","children":null,"spread":false},{"title":"10.RandomForest代码.zip <span style='color:#111;'> 32.44MB </span>","children":null,"spread":false},{"title":"6.7.WordCloud.zip <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":"4.Python代码","children":[{"title":"4.Python","children":[{"title":"4.1.intro.py <span style='color:#111;'> 18.72KB </span>","children":null,"spread":false},{"title":"4.3.calc_sin.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 687B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 26.26KB </span>","children":null,"spread":false},{"title":"4.Python.iml <span style='color:#111;'> 459B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 268B </span>","children":null,"spread":false}],"spread":true},{"title":"4.2.calc_e.py <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"4.5.pi.py <span style='color:#111;'> 173B </span>","children":null,"spread":false},{"title":"4.6.Ensumble.py <span style='color:#111;'> 1018B </span>","children":null,"spread":false},{"title":"4.4.class_intro.py <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"4.7.Benford.py <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false}],"spread":true},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 210B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 14.39KB </span>","children":null,"spread":false},{"title":"4.Python代码.iml <span style='color:#111;'> 284B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 280B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"8.Regression代码(1).zip <span style='color:#111;'> 37.89KB </span>","children":null,"spread":false},{"title":"14.SVM代码.zip <span style='color:#111;'> 13.85MB </span>","children":null,"spread":false},{"title":"4.Python代码.zip <span style='color:#111;'> 15.36KB </span>","children":null,"spread":false},{"title":"22.LDA_代码.zip <span style='color:#111;'> 5.32MB </span>","children":null,"spread":false},{"title":"12.XGBoost","children":[{"title":"agaricus_train.txt <span style='color:#111;'> 721.84KB </span>","children":null,"spread":false},{"title":"Titanic.train.csv <span style='color:#111;'> 59.76KB </span>","children":null,"spread":false},{"title":"12.1.xgBoost_Intro.py <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"12.3.xgBoost_Wine.py <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"12.4.xgBoost_ReadData.py <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"agaricus.txt <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false},{"title":"Titannic_Meta.txt <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"12.2.xgBoost_Predict.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"Titanic.test.csv <span style='color:#111;'> 27.96KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 687B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 24.69KB </span>","children":null,"spread":false},{"title":"12.XGBoost.iml <span style='color:#111;'> 459B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 272B </span>","children":null,"spread":false}],"spread":false},{"title":"agaricus_test.txt <span style='color:#111;'> 178.57KB </span>","children":null,"spread":false},{"title":"Titanic.train_Prime.csv <span style='color:#111;'> 59.76KB </span>","children":null,"spread":false},{"title":"wine.data <span style='color:#111;'> 10.53KB </span>","children":null,"spread":false},{"title":"12.5.Titanic.py <span style='color:#111;'> 5.49KB </span>","children":null,"spread":false},{"title":"wine_names <span style='color:#111;'> 2.96KB </span>","children":null,"spread":false},{"title":"New_Data.csv <span style='color:#111;'> 70.78KB </span>","children":null,"spread":false}],"spread":false},{"title":"8.Regression代码.zip <span style='color:#111;'> 37.89KB </span>","children":null,"spread":false},{"title":"24.HMM_代码.zip <span style='color:#111;'> 32.30MB </span>","children":null,"spread":false},{"title":"6.Data代码.zip <span style='color:#111;'> 13.75MB </span>","children":null,"spread":false},{"title":"5.Package代码.zip <span style='color:#111;'> 746.20KB </span>","children":null,"spread":false},{"title":"20.BayesianNetwork代码.zip <span style='color:#111;'> 2.59MB </span>","children":null,"spread":false},{"title":"16.Clustering代码.zip <span style='color:#111;'> 3.15MB </span>","children":null,"spread":false},{"title":"xgboost-master-(windows上的编译包).zip <span style='color:#111;'> 1.13MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • leichangqing :
    非常好的资料
    2019-02-27
  • qq_23617549 :
    谢谢分享,感觉太贵了
    2018-12-02
  • longxiafei :
    程序都有,还可以
    2018-11-07
  • jiangdong2018 :
    非常好的资料
    2018-10-22
  • _Cheungabriel_ :
    还不错,顶一哈
    2018-09-14

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明