机器学习项目:实施各种有监督和无监督的ML项目-源码

上传者: 42121058 | 上传时间: 2021-02-10 12:04:01 | 文件大小: 5.28MB | 文件类型: ZIP
机器学习项目 实施各种有监督和无监督的机器学习项目

文件下载

资源详情

[{"title":"( 45 个子文件 5.28MB ) 机器学习项目:实施各种有监督和无监督的ML项目-源码","children":[{"title":"Machine-Learning-Projects-main","children":[{"title":"NLP","children":[{"title":"Restaurant-Reviews-Sentiment-Analysis","children":[{"title":"Restaurant_Reviews.tsv <span style='color:#111;'> 59.89KB </span>","children":null,"spread":false},{"title":"restaurant_reviews_stem_bow.ipynb <span style='color:#111;'> 59.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"ML-Spam-Detection","children":[{"title":"SPAM_Detection_stem_bow.ipynb <span style='color:#111;'> 292.75KB </span>","children":null,"spread":false},{"title":"SMSSpamCollection <span style='color:#111;'> 466.71KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Regression Projects","children":[{"title":"Random Forest Regressor","children":[{"title":"Random Forest Regressor.ipynb <span style='color:#111;'> 47.06KB </span>","children":null,"spread":false},{"title":"random forest assignment.pdf <span style='color:#111;'> 4.09KB </span>","children":null,"spread":false}],"spread":true},{"title":"Flight-Fare-Prediction","children":[{"title":"flight_fare_prediction.ipynb <span style='color:#111;'> 298.22KB </span>","children":null,"spread":false},{"title":"Data_Train.xlsx <span style='color:#111;'> 517.96KB </span>","children":null,"spread":false},{"title":"Test_set.xlsx <span style='color:#111;'> 117.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"Linear Regression Project","children":[{"title":"linear regression assignment.pdf <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"inear-regression-housing-pred.ipynb <span style='color:#111;'> 82.14KB </span>","children":null,"spread":false}],"spread":true},{"title":"Car-Price-Prediction","children":[{"title":"car data.csv <span style='color:#111;'> 16.81KB </span>","children":null,"spread":false},{"title":"Car Price Prediction.ipynb <span style='color:#111;'> 166.51KB </span>","children":null,"spread":false},{"title":"CAR DETAILS FROM CAR DEKHO.csv <span style='color:#111;'> 346.32KB </span>","children":null,"spread":false}],"spread":true},{"title":"Housing Price Prediction","children":[{"title":"train.csv <span style='color:#111;'> 449.88KB </span>","children":null,"spread":false},{"title":"Housing Price Prediction.ipynb <span style='color:#111;'> 1.41MB </span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'> 440.83KB </span>","children":null,"spread":false},{"title":"data_description.txt <span style='color:#111;'> 13.06KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Classification Projects","children":[{"title":"PIMA-Diabetes-Kaggle-Problem-Statement","children":[{"title":"pima_diabetes_classification.ipynb <span style='color:#111;'> 119.73KB </span>","children":null,"spread":false},{"title":"diabetes.csv <span style='color:#111;'> 23.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"Titanic Decision Tree","children":[{"title":"decision tree assignment.pdf <span style='color:#111;'> 400.98KB </span>","children":null,"spread":false},{"title":"titanic decision tree.ipynb <span style='color:#111;'> 104.75KB </span>","children":null,"spread":false}],"spread":true},{"title":"XGB Classifier","children":[{"title":"adult.csv <span style='color:#111;'> 3.91MB </span>","children":null,"spread":false},{"title":"XGB_Classifier_with_Standardization.ipynb <span style='color:#111;'> 343.20KB </span>","children":null,"spread":false},{"title":"xgboost assignment.pdf <span style='color:#111;'> 7.98KB </span>","children":null,"spread":false}],"spread":true},{"title":"Bank-Notes-Authenticator","children":[{"title":"BankNote_Authentication.csv <span style='color:#111;'> 45.35KB </span>","children":null,"spread":false},{"title":"BankNoteAuthentication.ipynb <span style='color:#111;'> 16.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"Titanic Survival Analysis","children":[{"title":"train.csv <span style='color:#111;'> 59.76KB </span>","children":null,"spread":false},{"title":"Titanic Passenger Survival.ipynb <span style='color:#111;'> 593.46KB </span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'> 27.96KB </span>","children":null,"spread":false}],"spread":true},{"title":"Logistic Regression Project","children":[{"title":"Affair or Not Affair Logistic Regression.ipynb <span style='color:#111;'> 250.83KB </span>","children":null,"spread":false},{"title":"logistics regression assignement.pdf <span style='color:#111;'> 6.81KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Data Engineering","children":[{"title":"Data Cleaning","children":[{"title":"datacleaning pandas.pdf <span style='color:#111;'> 161.10KB </span>","children":null,"spread":false},{"title":"Data Cleaning.ipynb <span style='color:#111;'> 19.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"Numpy","children":[{"title":"Numpy Python.ipynb <span style='color:#111;'> 5.93KB </span>","children":null,"spread":false}],"spread":true},{"title":"Data Visulaization","children":[{"title":"Iris.xls <span style='color:#111;'> 4.99KB </span>","children":null,"spread":false},{"title":"Data Visualization.ipynb <span style='color:#111;'> 134.59KB </span>","children":null,"spread":false},{"title":"data visualization assignment.pdf <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 34.33KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 95B </span>","children":null,"spread":false},{"title":"Unsupervised ML","children":[{"title":"ML Project Clustering","children":[{"title":"ML project clustering.pdf <span style='color:#111;'> 28.70KB </span>","children":null,"spread":false},{"title":"ML_Clustering_Assignment.ipynb <span style='color:#111;'> 1.18MB </span>","children":null,"spread":false}],"spread":true},{"title":"K-Means Clustering","children":[{"title":"compressed_racoon.jpg <span style='color:#111;'> 295.39KB </span>","children":null,"spread":false},{"title":"clustering assignment.pdf <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false},{"title":"K-Means Clustering.ipynb <span style='color:#111;'> 279.87KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明