RCDNet:【CVPR2020可解释网络,PyTorch】模型驱动的深度神经网络,用于单图像除雨-源码

上传者: 42121058 | 上传时间: 2022-01-28 12:54:07 | 文件大小: 69.74MB | 文件类型: -
RCDNet:用于单幅图像去除的模型驱动的深度神经网络(CVPR2020) ,谢琪,赵倩和 抽象的 深度学习(DL)方法在去除单个图像雨水的任务中已经达到了最先进的性能。 但是,当前的大多数DL体系结构仍然缺乏足够的可解释性,并且没有与常规降雨条纹中的物理结构完全集成。 为此,在本文中,我们针对任务提出了一种模型驱动的深度神经网络,它具有可完全解释的网络结构。 具体而言,基于表示雨的卷积字典学习机制,我们提出了一种新颖的单图像排水模型,并利用近邻梯度下降技术设计了仅包含用于求解模型的简单算子的迭代算法。 这种简单的实现方案有助于我们将其展开为一个称为雨卷积字典网络(RCDNet)的新的深层网络体系结构,几乎每个网络模块都一对一地对应于算法中涉及的每个操作。 通过对建议的RCDNet进行端到端培训,可以自动提取所有的雨粒和近端操作员,如实地表征雨层和干净的背景层的特征,从而自然地导致其更好

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明