pytorch-NMF:一个用于非负矩阵分解的pytorch软件包-源码

上传者: 42120563 | 上传时间: 2021-06-11 20:31:24 | 文件大小: 1.8MB | 文件类型: ZIP
PyTorch中的非负矩阵组合 PyTorch不仅是一个很好的深度学习框架,而且还是矩阵操作和大数据卷积方面的快速工具。 一个很好的例子是 。 在此程序包中,我基于torch.nn.Module在PyTorch中实现了NMF,PLC​​A及其反卷积变化,因此可以在CPU / GPU设备之间自由移动模型并利用cuda的并行计算。 模组 NMF 基本的NMF和NMFD模块使用乘法更新规则将beta差异最小化。 乘数是通过torch.autograd获得的,因此减少了代码量并且易于维护。 该界面类似于sklearn.decomposition.NMF ,但具有一些其他选项。 NMF :原始NMF算法。 NMFD :一维反卷积NMF算法。 NMF2D :二维反卷积NMF算法。 NMF3D :3-D反卷积NMF算法。 可编程逻辑控制器 基本的PLCA和SIPLCA模块使用EM算法来最

文件下载

资源详情

[{"title":"( 35 个子文件 1.8MB ) pytorch-NMF:一个用于非负矩阵分解的pytorch软件包-源码","children":[{"title":"pytorch-NMF-master","children":[{"title":"setup.py <span style='color:#111;'> 764B </span>","children":null,"spread":false},{"title":"readthedocs.yml <span style='color:#111;'> 47B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 16B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":".github","children":[{"title":"workflows","children":[{"title":"python-package.yml <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"python-publish.yml <span style='color:#111;'> 941B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"examples","children":[{"title":"Amen_break.ipynb <span style='color:#111;'> 1.74MB </span>","children":null,"spread":false},{"title":"basic_tutorial.ipynb <span style='color:#111;'> 3.06KB </span>","children":null,"spread":false},{"title":"performance.png <span style='color:#111;'> 21.00KB </span>","children":null,"spread":false},{"title":"librosa_example.py <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"librosa_example.png <span style='color:#111;'> 470.66KB </span>","children":null,"spread":false},{"title":"performance.py <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 3.72KB </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"test_trainer.py <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"test_nmf.py <span style='color:#111;'> 3.63KB </span>","children":null,"spread":false},{"title":"test_plca.py <span style='color:#111;'> 5.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"torchnmf","children":[{"title":"trainer.py <span style='color:#111;'> 6.64KB </span>","children":null,"spread":false},{"title":"nmf.py <span style='color:#111;'> 26.08KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 166B </span>","children":null,"spread":false},{"title":"constants.py <span style='color:#111;'> 51B </span>","children":null,"spread":false},{"title":"plca.py <span style='color:#111;'> 22.49KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 321B </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 3.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"docs","children":[{"title":"requirements.txt <span style='color:#111;'> 112B </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 638B </span>","children":null,"spread":false},{"title":"make.bat <span style='color:#111;'> 799B </span>","children":null,"spread":false},{"title":"source","children":[{"title":"index.rst <span style='color:#111;'> 865B </span>","children":null,"spread":false},{"title":"conf.py <span style='color:#111;'> 3.59KB </span>","children":null,"spread":false},{"title":"notes","children":[{"title":"intro.rst <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false},{"title":"installation.rst <span style='color:#111;'> 499B </span>","children":null,"spread":false}],"spread":false},{"title":"modules","children":[{"title":"metrics.rst <span style='color:#111;'> 105B </span>","children":null,"spread":false},{"title":"trainer.rst <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"plca.rst <span style='color:#111;'> 370B </span>","children":null,"spread":false},{"title":"nmf.rst <span style='color:#111;'> 361B </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明