ai-sgd:在随机梯度下降中走向稳定性和最优性-源码

上传者: 42120541 | 上传时间: 2021-12-11 18:47:04 | 文件大小: 34KB | 文件类型: -
R
随机梯度下降的稳定性和最优性 这是正在进行的论文的方法和算法的随附代码实现。 维护者 Dustin Tran < > 参考 弗朗西斯·巴赫 (Francis Bach) 和埃里克·穆林 (Eric Moulines)。 收敛速度为 O(1/n) 的非强凸平滑随机近似。 神经信息处理系统的进展,2013 年。 杰罗姆·弗里德曼、特雷弗·哈斯蒂和罗伯特·蒂布希拉尼。 通过坐标下降的广义线性模型的正则化路径。 统计软件杂志,33(1):1-22, 2010。 瑞·约翰逊和张彤。 使用预测方差减少加速随机梯度下降。 神经信息处理系统的进展,2013 年。 大卫·鲁珀特。 来自缓慢收敛的 robbins-monro 过程的有效估计。 技术报告,康奈尔大学运筹学和工业工程,1988 年。 魏旭。 使用平均随机梯度下降实现最优的一次通过大规模学习。 arXiv 预印本 , 2011。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明